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AbstractProgramming is a notoriously error-prone process, and a great deal of evidence inpractice has demonstrated that the use of a type system in a programming languagecan e�ectively detect program errors at compile-time. Moreover, some recent studieshave indicated that the use of types can lead to signi�cant enhancement of programperformance at run-time. For the sake of practicality of type-checking, most typesystems developed for general purpose programming languages tend to be simpleand coarse, and this leaves ample room for improvement. As an advocate of types,this thesis addresses the issue of designing a type system for practical programmingin which a notion of dependent types is available, leading to more accurate captureof program invariants with types.In contrast to developing a type theory with dependent types and then designingupon it a functional programming language, we study practical methods for extend-ing the type systems of existing programming languages with dependent types. Wepresent an approach to enriching the type system of ML with a special form of de-pendent types, where type index objects are restricted to some constraint domainsC, leading to the DML(C) language schema. The aim is to provide for speci�ca-tion and inference of signi�cantly more precise type information compared with thecurrent type system of ML, facilitating program error detection and compiler opti-mization. A major complication resulting from introducing dependent types is thatpure type inference for the resulting system is no longer possible, but we show thattype-checking a su�ciently annotated program in DML(C) can be reduced to con-straint satisfaction in the constraint domain C. Therefore, type-checking in DML(C)can be made practical for those constraint domains C for which e�cient constraintsolvers can be provided. We prove that DML(C) is a conservative extension overML, that is, a valid ML program is always valid in DML(C). Also we exhibit theunobtrusiveness of our approach through many practical examples. As a signi�cantapplication, we also demonstrate the elimination of array bound checks in real codewith the use of dependent types. All the examples have been veri�ed in a prototypeimplementation of a type-checker for DML(C), where C is some constraint domainin which constraints are linear inequalities on integers. This is another attempttowards re�ning the type systems of existing programing languages, following thestep of re�nement types (Freeman and Pfenning 1991).
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Chapter 1IntroductionTypes play a pivotal rôle in the design and implementation of programming languages. The useof types for catching program errors at compile-time goes back to the early days of FORTRAN. Acompelling reason for this practice is brie
y explained in the following quote.Unfortunately one often pays a price for [languages which impose no discipline of types]in the time taken to �nd rather inscrutable bugs|anyone who mistakenly applies CDRto an atom in LISP and �nds himself absurdly adding a property list to an integer, willknow the symptoms. { Robin MilnerA Theory of Type Polymorphism in Programming (Milner 1978)It is also well-known that a well-designed type system such as that of ML (Milner, Tofte, andHarper 1990) can e�ectively enable the programmer to catch numerous program errors at compile-time. However, there are also various occasions in which many common program errors cannotbe caught by the type system of ML. For instance, the error of taking the �rst element out of anempty list cannot be caught by the type system of ML because it does not distinguish empty listsfrom non-empty ones.The use of types for compiler optimization, such as passing types to a polymorphic function tohelp eliminate boxing and/or tagging objects, is a much more recent discovery. However, the typesystem of ML is also inadequate in this direction. For instance, it is desirable to express the typeof a safe array access operation since a compiler can then eliminate run-time array bound checksafter type-checking, but it is not clear how to do this in the current type system of ML.In the rest of this chapter we use concrete examples to illustrate the advantage of enriching thetype system of ML with dependent types. We also describe the context in which this thesis exists,and then outline the rest of the thesis.1.1 Introductory ExamplesIn this section we present several introductory examples to illustrate the expressiveness of the typesystem which we will soon formulate and study. We suggest that the reader pay further attentionto these examples when studying the theoretical core of the thesis later. Some larger examples canbe found in Appendix A.Notice that a correct implementation of a reverse function on lists should return a list of thesame length as that of its argument. Unfortunately, this property cannot be captured by the type1
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2 CHAPTER 1. INTRODUCTIONdatatype 'a list = nil | cons of 'a * 'a listtyperef 'a list of nat (* indexing datatype 'a list with nat *)with nil <| 'a list(0)| cons <| {n:nat} 'a * 'a list(n) -> 'a list(n+1)fun('a)reverse(l) =let fun rev(nil, ys) = ys| rev(cons(x, xs), ys) = rev(xs, cons(x, ys))where rev <| {m:nat}{n:nat} 'a list(m) * 'a list(n) -> 'a list(m+n)in rev(l, nil) endwhere reverse <| {n:nat} 'a list(n) -> 'a list(n)Figure 1.1: The reverse function on listssystem of ML. The inadequacy can be remedied if we introduce dependent types. The example inFigure 1.1 is written in the style of Standard ML with some annotations, which will be explainedshortly. We assume that we are working over the constraint domain of natural numbers withconstants 0 and 1 and addition operation +. The polymorphic datatype 'a list is de�ned torepresent the type of lists. This datatype is indexed by a natural number, which stands for thelength of a list in this case. The constructors associated with the datatype 'a list are thenassigned dependent types:� nil <| 'a list(0) states that nil is a list of length 0.� cons <| {n:nat} 'a * 'a list(n) -> 'a list(n+1) states that cons yields a list of lengthn+ 1 when given a pair consisting of an element and a list of length n. Note that {n:nat}means that n is universally quanti�ed over natural numbers, usually written as �n : nat.The use of fun('a) is a recent feature of Standard ML (Milner, Tofte, Harper, and MacQueen1997), which allows the programmer to explicitly control the scope of the type variable 'a. Thetype of reverse is {n:nat} 'a list(n) -> 'a list(n);which states that reverse always returns an a list of length n if given one of length n. In this way,we have captured the information that the function reverse is length-preserving. Notice that wehave also assigned the auxiliary function rev the following dependent type,{m:nat}{n:nat} 'a list(m) * 'a list(n) -> 'a list(m+n)that is, rev always returns a list of length m + n when given a pair of lists of lengths m and n.respectively. This invariant must be provided in order to type-check the entire code.The next example in Figure 1.2 implements a quicksort function on intlist. The datatypeintlist, which represents an integer list, is indexed by an integer which stands for the sum of allelements in the integer list. The following type of quicksort{sum:int} intlist(sum) -> intlist(sum)
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1.1. INTRODUCTORY EXAMPLES 3states that the the sum of all elements in the output intlist of the function always equals thesum of all elements in its input intlist. Therefore, if one mistakenly writespar(x, intCons(x,left),right, ys) instead of par(x, intCons(y,left), right, ys);the error, which is not unusual, can be captured in the enriched type system. Notice that this errorslips through the current type system of ML.The above examples exhibit some potential use of dependent types in compile-time programerror detection. We now show some potential use of dependent types in compiler optimization.The example in Figure 1.3 implements a binary search function on a polymorphic array. Theasserted type of the subscript function sub precisely states that it returns an element of type 'awhen given an 'a array of size n and and an integer equal to i such that 0 � i < n holds. Clearly,if the subscript function sub of this type is called, there is no need for inserting run-time arraybound checks for checking possible memory violations. This not only enhances the robustness ofthe code but also its e�ciency, illustrating that safety and e�ciency issues can be complementary,sometimes.Note that the programmer has to provide an appropriate type for the inner function look inorder to have the code type-checked successfully. We will come back to this point later.There is a common feature in the above three examples, that is all the type index objects aredrawn from the integer constraint domain. The next example in Figure 1.4 and Figure 1.5 showsthat we can also index datatypes with type index objects drawn from di�erent constraint domains.Since this example is considerably involved, we present some detailed explanation.The datatype simple_type represents simple types in a simply typed �-calculus. The datatypetype context is basically a list of simple types, which is used to assigns types to free variables ina �-expression. The datatype lambda_exp is for formulating simply typed �-expressions in the deBruijn's notation (de Bruijn 1980). For instance, �x�y:y(x) can be represented asAbs(Abs(App(One, Shift(One)))):The datatypes closure and enviroment are de�ned mutually recursively. An environment is alist of closures and a closure is a �-abstraction associated with an environment which binds everyfree variable in the �-abstraction to some closure.We now re�ne some of these datatype types into dependent types in Figure 1.4. The datatypelambda_exp is made dependent on a pair (t,ctx), where t stands for the simple type of a lambda-expression under the context ctx. Then we assign dependent types to the constructors associatedwith the datatype lambda_exp. For instance, the dependent type of App states that App yields an�-expression of type tb under context ctx if given a pair of �-expressions of types Fun(ta,tb) andta under context ctx, respectively.The datatype closure is made dependent on an index drawn from the type simple_type,which stands for the type of a closure. Also the datatype environment, is made dependent on anindex drawn from the type context, which is a list of simple types corresponding to the list ofclosures in the environment.We assign the function call_by_value the following type{t:simple_type} lambda_exp(t, CTXempty) -> closure(t)which states that this function always returns a closure of type t when given an argument oftype lambda_exp(t,CTXempty), i.e., a closed �-expression of type t. This simply means that this
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4 CHAPTER 1. INTRODUCTION

datatype intlist = intNil | intCons of int * intlisttyperef intlist of int (* sum *)with intNil <| intlist(0)| intCons <| {i:nat, sum:int} int(i) * intlist(sum) -> intlist(i+sum)fun intAppend(intNil, rs) = rs| intAppend(intCons(l, ls), rs) = intCons(l, intAppend(ls, rs))where intAppend <| {sm:int, sn:int} intlist(sm) * intlist(sn) -> intlist(sm+sn)fun quicksort(intNil) = intNil| quicksort(intCons(x,xs)) =let fun par(x, left, right, intNil) =intAppend(quicksort(left), intCons(x,quicksort(right)))| par(x, left, right, intCons(y,ys)) =if y <= x then par(x, intCons(y,left), right, ys)else par(x, left, intCons(y,right), ys)where par <| {i:int, sp:int, sq:int, sr:int}int(i) * intlist(sp) * intlist(sq) * intlist(sr) ->intlist(i+sp+sq+sr)in par(x, intNil, intNil, xs) endwhere quicksort <| {sum:int} intlist(sum) -> intlist(sum)Figure 1.2: Quicksort on integer lists
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1.1. INTRODUCTORY EXAMPLES 5
datatype 'a answer = NONE | SOME of int * 'aassert sub <| {n:nat, i:int | 0 <= i < n } 'a array(n) * int(i) -> 'aassert length <| {n:nat} 'a array(n) -> int(n)fun('a){size:nat}bsearch cmp (key, arr) =let fun look(lo, hi) =if hi >= lo thenlet val m = (hi + lo) div 2val x = sub(arr, m)in case cmp(key, x) ofLESS => look(lo, m-1)| EQUAL => SOME(m, x)| GREATER => look(m+1, hi)endelse NONEwhere look <| {l:nat, h:int | 0 <= l <= size /\ 0 <= h+1 <= size }int(l) * int(h) -> 'a answerin look (0, length arr - 1)endwhere bsearch <| ('a * 'a -> order) -> 'a * 'a array(size) -> 'a answerFigure 1.3: Binary search on arrays
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6 CHAPTER 1. INTRODUCTIONdatatype simple_type = Base of int | Fun of simple_type * simple_typedatatype context = CTXempty | CTXcons of simple_type * contextdatatype lambda_exp =One | Shift of lambda_exp |Abs of lambda_exp |App of lambda_exp * lambda_exptyperef lambda_exp of simple_type * contextwith One <| {t:simple_type}{ctx:context} lambda_exp(t,CTXcons(t,ctx))| Shift <| {ta:simple_type}{tb:simple_type}{ctx:context}lambda_exp(ta,ctx) -> lambda_exp(ta,CTXcons(tb,ctx))| Abs <| {ta:simple_type}{tb:simple_type}{ctx:context}lambda_exp(tb,CTXcons(ta,ctx)) ->lambda_exp(Fun(ta,tb),ctx)| App <| {ta:simple_type}{tb:simple_type}{ctx:context}lambda_exp(Fun(ta,tb),ctx) * lambda_exp(ta,ctx) -> lambda_exp(tb,ctx)datatype closure = Closure of lambda_exp * environmentand environment = ENVempty | ENVcons of closure * environmenttyperef closure of simple_typewith Closure <| {t:simple_type}{ctx:context}lambda_exp(t,ctx) * environment(ctx) -> closure(t)and environment of simple_type * contextwith ENVempty <| environment(CTXempty)| ENVcons <| {t:simple_type}{ctx:context}closure(t) * environment(ctx) -> environment(CTXcons(t,ctx))Figure 1.4: A call-by-value evaluator for simply typed �-calculus (I)implementation of an evaluator for the pure simply typed call-by-value �-calculus �a la Curry typingis a type-preserving function. Clearly, the programmer should have much more con�dence in thecorrectness of the function call_by_value after the code passes type-checking.1.2 Basic OverviewWe outline in this section the historic context in which this thesis is developed, and mention somerelated work in the next section.The problem of correctness of programs is ever present in programming. There has been a longhistory of research work on program veri�cation.The use of assertions to specify and prove correctness of 
owchart programs was developedindependently by Naur (Naur 1966) and Floyd (Floyd 1967). Hoare then constructed a partial-
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1.2. BASIC OVERVIEW 7fun call_by_value(e) =letfun cbv(One, ENVcons(clo, env)) = clo| cbv(Shift(e), ENVcons(clo, env)) = cbv(e, env)| cbv(Abs(e), env) = Closure(Abs(e), env)| cbv(App(f, e), env) =letval Closure(Abs(body), fenv) = cbv(f, env)val clo = cbv(e, env)incbv(body, ENVcons(clo, fenv))endwhere cbv <| {t:simple_type, ctx:context}lambda_exp(t,ctx) * environment(ctx) -> closure(t)incbv(e, ENVempty)endwhere call_by_value <| {t:simple_type} lambda_exp(t, CTXempty) -> closure(t)Figure 1.5: A call-by-value evaluator for simply typed �-calculus (II)correctness system (Hoare 1969) which brought us Hoare logic. Then Dijkstra invented the notionof weakest preconditions (Dijkstra 1975) and explored it in more details, with many examples,in (Dijkstra 1976). As a generalization of the weakest-precondition approach, re�nement logicshave become an active research area in recent years. These approaches are in general notoriouslydi�cult and expensive to put into software practice. Only small pieces of safety critical softwarecan a�ord to be formally veri�ed with such approaches. Although rapid progress has been made,there are still strong reservations on whether daily practical programming can bene�t much fromthese approaches. However, these approaches are gaining grounds in the veri�cation of hardware.For functional programming languages we �nd two principal styles of reasoning: equational andlogical .Equational reasoning is performed through program transformation, which has its roots in(Church and Rosser 1936). Burstall and Darlington presented a transformation system for devel-oping recursive programs (Burstall and Darlington 1977). Also we have Bird-Meertens calculusfor derivation of functional programs from a speci�cation (Bird 1990), which consists of a set ofhigher-order functions that operate on lists including map, fold, scan, �lter, inits, tails, cross prod-uct and function composition. Equational reasoning also plays a fundamental role in FP and EML(Kahrs, Sannella, and Tarlecki 1994).Logical reasoning is most often cast into type theory, which has its roots in (Church 1940;Martin-L�of 1984). This approach emphasizes the joint development of proofs and programs. Manysystems such as NuPrl (Constable et al. 1986), Coq (Coquand 1991), LEGO (Pollack 1994), ALF(Augustsson, Coquand, and Nordstr�om 1990) and PVS (Shankar 1996) are based on some variantsof type theory, though this can also be done in a \type-free" setting as shown in PX (Hayashiand Nakano 1988). However, recently it has also been used to generate post-hoc proofs and proof
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8 CHAPTER 1. INTRODUCTIONskeletons from functional programs together with speci�cations (Parent 1995).There are several major di�culties associated with type-theoretic approaches.1. Languages tend to be unrealistically small. Although pure type systems (Barendregt 1992)can be formulated concisely and elegantly, they contain too few language constructs to sup-port practical programming.2. It is unwieldy to add programming features into pure type theories. This is attested in theworks such as allowing unlimited recursion (Constable and Smith 1987), introducing recursivetypes (Mendler 1987), and incorporating e�ects (Honsell, Mason, Smith, and Talcott 1995),exceptions (Nakano 1994) and input/output.3. Type-checking is usually undecidable in systems enriched with recursion and dependent types.Therefore, type-checking programs requires a certain level of theorem proving. For systemssuch as NuPrl and PVS, type-checking is interactive and may often become a daunting taskfor programmers.4. It is heuristic at best to do theorem proving by tactics during type-checking, and this requiresa lot of user interactions. Since small changes in program may often mean a big change ina proof and there are many changes to be made during the program development cycle, thecost in e�ort and time often deters the user from programming in such a setting.Instead, we propose to enrich the type systems of an existing functional programming language(ML). In contrast to adjusting programming language features such as recursion, e�ects and ex-ceptions to a type theory, we study approaches to adjusting a type theory to these programminglanguage features. We re�ne ML types with dependent types and introduce a restricted form of de-pendent types, borrowing ideas from type theory. This enables us to assert additional properties ofprograms in their types, providing signi�cantly more information for program error detection andcompiler optimization. In order to make type-checking manageable in this enriched type system,we require that type dependencies be taken from some restricted constraint domain C, leading tothe DML(C) language schema. We then prove that type-checking a su�ciently annotated programin DML(C) can be reduced to constraint satisfaction in the constraint domain C. An immediateconsequence of this reduction is that if we choose C to be some relative simple constraint domainsfor which there are practical approaches to solving constraints, then we can construct a practicaltype-checking algorithm for DML(C). We will focus on the case where C is some integer constraintdomain in which the constraints are linear inequalities on integers.1.3 Related WorkIt is certainly beyond reasonable hope to mention even a moderate part of the research on thecorrectness of programs. This is simply because of the vastness of the �eld. We shall examinesome e�orts which have a close connection to our work, mostly concerning type theories and theirapplications. We start with Martin-L�of's constructive type theory.1.3.1 Constructive Type Theory and Related SystemsThe system of constructive type theory is based primarily on the work of Per Martin-L�of (Martin-L�of 1985; Martin-L�of 1984). Its core idea often reads propositions as types. This is a system which
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1.3. RELATED WORK 9is simultaneously a logic and a programming language. Programs are developed in such a way thatthey must behave according to their speci�cations. This is achieved through formal proofs whichare written within the programs. The correctness of these proofs is veri�ed by type-checkers.NuPrl The NuPrl proof system was developed to allow the extraction of programs from the proofof speci�cations (Constable et al. 1986). Its logical basis is a sequent-calculus formulation of adescendant of constructive type theory. Similarly to LCF it features a goal-oriented proof engineemploying tactics formulated in the ML programming language. The emphasis of NuPrl is logical,in that it is designed to support the top-down construction of derivations of propositions in adeduction system.ALF The ALF (Another Logical Framework) system is an interactive proof editing environmentwhere proof objects for mathematical theorems are constructed on screen. It is based on Martin-L�of's monomorphic type theory (Augustsson, Coquand, and Nordstr�om 1990; Nordstr�om 1993).The proof editor keeps a theory environment, a dictionary with abbreviations and a scratch area.The user navigates in the scratch area to build proofs in top-down and/or bottom-up fashion. Anovelty of ALF lies in its use of pattern matching with dependent types (Coquand 1992) for de�ningfunctions. The totality of functions de�ned by pattern matching is guaranteed by some restrictionson recursive equational de�nitions. This allows the user to formulate signi�cantly shorter proofsin ALF than in many other systems.1.3.2 Computational Logic PXRealizability models of intuitionistic formal systems also allow the extraction of computationsfrom the systems. PX is such a system which is introduced in (Hayashi 1990) and describedin detail in (Hayashi and Nakano 1988). PX is a logic for a type-free theory of computationbased on Feferman's T0 (Feferman 1979), from which LISP programs are extracted by a notion ofrealizability: PX-realizability. Hayashi argues that the requirement that a theory be total is toorestrictive for practical programming, in justi�cation of his logic being based around a system ofpossibly nonterminating computations.Also Hayashi proposed a type system ATTT in (Hayashi 1991), which allows a notion of re-�nement types as in the type system for ML (Freeman and Pfenning 1991), plus intersection andunion of re�nement types and singleton re�nement types. He demonstrated that singleton, unionand intersection types allow the development of programs without unnecessary coding via a variantof the Curry-Howard isomorphism. More exactly, they give a way to write types as speci�cationsof programs without unnecessary coding which is inevitable otherwise.1.3.3 The Calculus of Constructions and Related SystemsCalculus of Constructions and Coq The calculus of constructions (CC) is a type system whichbasically enriches Girard's F! with types dependent on terms. It therefore relates to Martin-L�of'sintuitionistic theory of types (TT) in this respect. CC was originally developed and implementedby Coquand and Huet (Coquand and Huet 1985; Coquand and Huet 1988). Coquand and Paulin-Mohring proposed to extend CC with primitive inductive de�nitions (Paulin-Mohring 1993), whichled to the calculus of inductive constructions and its implementation in the Coq proof assistantconsisting of a proof-checker for CC, a facility called Mathematical Vernacular for the high-level
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10 CHAPTER 1. INTRODUCTIONnotation of mathematical theories, and an interactive theorem prover based on tactics written inthe Caml dialect of the ML language.Recently, Parent (Parent 1995) proposed to reverse the process of extracting programs fromconstructive proofs in Coq, synthesizing, post hoc, proofs from programs. This approach has a closeconnection to ours, in that we are trying to use dependent types expressing additional properties ofprograms which are then veri�ed by a type-checker. Relying on a weak extraction function whichproduces programs with annotations, Parent introduced a new language for annotated programsand proved that partial proof terms can be deterministically retrieved from given programs in thislanguage and their speci�cations. Then she showed that such an extraction function is invertible,deducing an algorithm for reconstructing proofs from programs. She also proved the validity andcompleteness (in a certain sense) of this approach. Programs usually have prohibitively manyannotations in the new language, preventing the user from writing su�ciently natural programs.A heuristic algorithm for generating partial proof terms was then proposed and implemented inCoq as a tactic. This tactic builds a partial proof term from a program and a speci�cation, andthen the usual Coq tactics are called to ful�ll the proof obligations.ECC and LEGO The Extended Calculus of Constructions (ECC) (Lou 1989) uni�es ideas fromMartin-L�of's type theory and the Calculus of Constructions. In (Lou 1991) a further extensionof the framework by datatypes covered with a general form of schemata is proposed. The LEGOsystem implements ECC, in which the use of inductive de�nitions and pattern matching is appealingto practical work on proofs.1.3.4 Software Model CheckingModel checking is superior to general theorem proving in a few aspects. Model checking neednot invent lemmas or devise proof strategies, o�ering full automation. Also model checking cangenerate counterexamples when a check fails. Both software speci�cations and their intendedproperties can be expressed in a simple relational calculus (Jackson, Somesh, and Damon 1996).The claim that a speci�cation satis�es a property becomes a relational formula that can then bechecked automatically by enumerating the formula's interpretations if the number of interpretationis �nite. Unfortunately, in software designs, state explosion arises more from the data structuresof a single program than from the product of the control states of several programs. The result isthat the number of di�erent interpretations for a relational formula is in general vastly too greatfor brute-force enumerations to be feasible. Even worse, it is quite often the case where such aformula can have in�nitely many interpretations. In (Jackson, Somesh, and Damon 1996), it isproposed to reduce the number of cases which a checker must consider by eliminating isomorphicinterpretations. This strategy has been successfully tried in hardware veri�cation. Also with greatcare one needs to downscale the state space of a system, bring it into the reach of a checker. Thisis based on the assumption that if a bug lies in the original system, then it is likely to cause a bugin the downscaled system. Experience suggests that enumerating all behaviors for the downscaledmachine is a more reliable debugging method than exploring merely some cases for the originalsystem.As we will see, if we choose C to be some �nite domain then model checking seems to be anatural approach to solving the constraints generated during type-checking programs in DML(C).
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1.3. RELATED WORK 111.3.5 Extended MLSannella and Tarlecki proposed Extended ML (Sannella and Tarlecki 1989) as a framework forthe formal development of programs in a pure fragment of Standard ML. The module system ofExtended ML can not only declare the type of a function but also the axioms it satis�es. This leadsto the need for theorem proving during type checking. We specify and check less information aboutfunctions which avoids general theorem proving. On the other hand, we currently do not addressmodule-level issues, although we believe that our approach should extend naturally to signaturesand functors without much additional machinery.1.3.6 Re�nement TypesTim Freeman and Frank Pfenning proposed re�nement types for ML (Freeman and Pfenning 1991).A user-de�ned ML datatype can be re�ned into a �nite lattice of subtypes. In this extension, typeinference is decidable and every well-typed expression has a principal type. The user is free to omittype declaration almost everywhere in a program. A prototype implementation (Freeman 1994)exhibits that this is a promising approach to enriching the type systems of ML. Our thesis workfollows the paradigm of re�nement types.1.3.7 Shape AnalysisJay and Sekanina (Jay and Sekanina 1996) introduced a technique for array bounds checking basedon the notion of shape types. Shape checking is a kind of partial evaluation and has very di�erentcharacteristics and source language when compared to DML(C), where C consists of linear integerequality and inequality constraints. We feel that their design is more restrictive and seems morepromising for languages based on iteration schemas rather than general recursion.1.3.8 Sized TypesHughes, Pareto and Sabry (Hughes, Pareto, and Sabry 1996) introduced the notion of sized typesfor proving the correctness of reactive systems. Though there exist some similarities between sizedtypes and datatype re�nement in DML(C) for some domain C on natural numbers, the di�erencesseem to be substantial. We feel that the language presented in (Hughes, Pareto, and Sabry 1996)is too restrictive for general purpose programming since the type system there can only handle (aminor variation of) primitive recursion. On the other hand, the use of sized types in the correctnessproofs of reactive systems cannot be achieved in DML at this moment.1.3.9 Indexed TypesSo far the most closely related to our work is the system of indexed types developed independentlyby Zenger in his forthcoming Ph.D. Thesis (Zenger 1998) (an earlier version of which is describedin (Zenger 1997)). He works in the context of of lazy functional programming. His language is cleanand elegant and his applications (which signi�cantly overlap with ours) are compelling. In general,his approach seems to require more changes to a given Haskell program to make it amenable tochecking indexed types than is the case for our system and ML. This is particularly apparent in thecase of existential dependent types, which are tied to data constructors. This has the advantageof a simpler algorithm for elaboration and type-checking than ours, but the program (and not just
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12 CHAPTER 1. INTRODUCTIONthe type) has to be more explicit. Also, since his language is pure, he does not consider a valuerestriction.1.3.10 CayenneCayenne (Augustsson 1998) is a Haskell-like language in which fully dependent types are available,that is, language expressions can be used as type index objects. The steep price for this is unde-cidable type-checking in Cayenne. We feel that Cayenne pays greater attention to making moreprograms typable than assigning programs more accurate types. In Cayenne, the printf in C,which is not typable in ML, can be made typable, and modules can be replaced with records, butthe notion of datatype re�nement does not exist. This clearly separates our language design fromthat of Cayenne.1.4 Research ContributionsThe notion of dependent types has been around for at least three decades, but it has not beenmade applicable to practical programming before. One major obstacle is the di�culty in designinga practical type-checking algorithm for dependent type systems.The main contribution of this thesis is we convincingly demonstrate the use of a restrictedform of dependent types in practical programming. We present a sound and practical approach toextending the type system of ML with dependent types, achieving this through theoretical work,actual implementation and evaluation. The following consists of some major steps which lead tothe substantiation of this claim.1. We separate type index objects from expressions in the programming language. More pre-cisely, we require that type index objects be restricted to some constraint domains C. Wethen prove that type-checking a su�ciently annotated program in this setting can be reducedto constraint satisfaction in C. It is this crucial decision in our language design which makestype-checking practical in the case where there are feasible approaches to solving constraintsin C.2. We prove that our enriched language is a conservative extension of ML. Therefore, a programwhich uses no features of dependent types behaves exactly the same as in ML at both compileand run time.3. We show that dependent types cope well with many important programming features suchas polymorphism, mutable references and exceptions.4. We exhibit the unobtrusiveness of dependent types in practical programming by writingprograms as well as by modifying existing ML code. Though the programmer has to providetype annotations in many cases in order to successfully type-check the code, the amount ofwork is moderate (type annotations usually accounts for less than 20% of the entire code).On the other hand, all type annotations are type-checked mechanically, and therefore theycan be fully trusted when used as program documentation.
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1.5. THESIS OUTLINE 135. We also demonstrate that the programmer can supply type annotations to safely removearray bound checks. This leads to not only more robust programs but also signi�cantly moree�cient code.In a larger scale, the dependent types also have the following potential applications, for which wewill provide illustrating examples.1. The dependent types in the source code can be passed down to lower level languages. Forinstance, we are also in the process of designing a dependently typed assembly language, inwhich the dependent types passed down from the source code can be used to generate aproof asserting the memory integrity of the assembly code. Therefore, our source languageis promising to act as a front-end for generating proof-carrying code (Necula 1997).2. The dependent types can facilitate the elimination of redundant matches in pattern matching.On one hand, this can lead to more accurate error or warning message reports during type-checking. One the other hand, this opens an exciting avenue to dependent type directed partialevaluation as shown in Section 9.3.2.1.5 Thesis OutlineThe rest of the thesis is organized as follows.In the next chapter, we start with an untyped language which is basically the call-by-value�-calculus extended with general pattern matching. The importance of this language lies in itsoperational semantics, to which we will relate the operational semantics of typed languages for-mulated later. We then introduce a typed programing language ML0, which is basically mini-MLextended with general pattern matching. We prove various well-known properties of ML0, whichmainly serve as the guidance for our further development. Also we study the operational equiva-lence relation in �patval , which is later needed in the proof of the correctness of elaboration algorithmsin Chapters 4 and 5.The language enriched with dependent types will be parameterized over a constraint domainfrom which the type index objects are drawn. We introduce a general constraint language inChapter 3 upon which a constraint domain is formulated. We then present some concrete examplesof constraint domains, including the integer domain needed for array bound check elimination.In Chapter 4, we introduce the notion of universal dependent types and extend ML0 with thisform of types. This leads to the programming language ML�0 (C). We then prove various importantproperties of ML�0 (C) and relate its operation semantics to that of ML0. This culminates with theconclusion that ML�0 (C) is a conservative extension of ML0. In order to show the unobtrusivenessof universal dependent types in programming, we also formulate an external programming languageDML0(C) for ML�0 (C) which closely resembles that for mini-ML. We then present an elaborationmapping from DML0(C) to ML�0 (C) and prove its correctness.In Chapter 5, we explain some inadequacies of ML�0 (C) through examples and introduce thenotion of existential dependent types. We extend ML�0 (C) with this form of types and obtainthe programming language ML�;�0 (C). The external language DML0(C) is extended accordingly.The initial development of this chapter is parallel to that of the previous one. However, it seemsdi�cult to �nd an elaboration mapping from DML0(C) to ML�;�0 (C) directly. We point out thedi�culty and suggest some methods to overcome it. Then an elaboration mapping for ML�;�0 (C)
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14 CHAPTER 1. INTRODUCTIONis presented and proven to be correct. The theoretical core of the thesis consist of Chapter 4 and5. We study combining dependent types with polymorphism in Chapter 6. Though the develop-ment of dependent types is largely orthogonal to polymorphism, there are still some practical issueswhich we must address. We introduce ML80 , a language which extends ML0 with let-polymorphism,and set up the machinery for combining dependent types with let-polymorphism. Lastly, we presenta two-phase elaboration algorithm for achieving full compatibility between ML80 and ML8;�;�0 (C),the language which extends ML�;�0 (C) with let-polymorphism.In Chapter 7, we study the interaction of dependent types with e�ects such as mutable refer-ences and exceptions. After spotting the problems, we adopt the value restriction approach, whichsolves these problems cleanly. We conclude with the formulation of a typed programing languageML8;�;�0;exc;ref(C) which includes features such as references, exceptions, let-polymorphism and depen-dent types. In other words, we have �nally extended the core of ML, that is, ML without modulelevel constructs, with dependent types.We describe a prototype implementation in Chapter 8, and then present in Chapter 9 someapplications of dependent types which include program error detection, array bound check elimi-nation, redundant match elimination, etc. Lastly, we conclude and point out some directions forfuture research.
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Chapter 2PreliminariesIn this chapter, we �rst introduce an untyped language �patval which is basically the call-by-value�-calculus extended with general pattern matching. The importance of this language lies in itsoperational semantics, to which we will relate the operational semantics of other typed languagesintroduced later.We then introduce an explicitly typed language upon which we will build our type system. Wecall this language ML0, which is basically mini-ML extended with pattern matching. We presentthe typing rules and operational semantics for ML0 and prove important properties of ML0 suchas the type preservation theorem, which are helpful for understanding what we develop later.Lastly, we study the operational equivalence relation in �patval . This will be used later whenwe prove the correctness of elaboration algorithms for the languages ML�0 (C) and ML�;�0 (C) inChapter 4 and 5.2.1 Untyped �-calculus with Pattern MatchingA crucial point in many typed programming languages is that types are indi�erent to programevaluation. Roughly speaking, one can erase all the type information in a program and evaluate itto reach the same result as one would while keeping all the type information during the evaluation.As matter of a fact, it is a common practice in many compilers to discard all the type information ina program after type-checking it. However, recent studies such as (Tarditi, Morrisett, Cheng, Stone,Harper, and Lee 1996; Morrisett, Walker, Crary, and Glew 1998) have demonstrated convincinglythat this practice may not be wise because type information can be very helpful for compileroptimization.Nonetheless it is necessary for us to show that types do not alter the operational semantics ofprograms in the various typed languages we formulate later in this thesis. For this purpose, weintroduce an untyped language �patval . We then de�ne an operational semantics for �patval to whichthe operational semantics of other typed languages will relate.The syntax of �patval is given in Figure 2.1. We use x; y and f as meta variables for objectlanguage variables, c for constructors, e for expressions, u for value forms and v for values. Valueforms are a special form of values and values are a special form of expressions. Also we use pfor patterns and we emphasize that a variable can occur at most once in a given pattern. Thesignature is a list of constructors available in the language.15
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16 CHAPTER 2. PRELIMINARIESpatterns p ::= x j c j c(p) j hi j hp1; p2imatches ms ::= (p) e) j (p) e j ms)expressions e ::= x j hi j he1; e2i j c(e) j (case e of ms) j (lam x:e) j e1(e2)j let x = e1 in e2 end j (�x f:u)value forms u ::= c(u) j hi j hu1; u2i j (lam x:e)values v ::= x j c(v) j hi j hv1; v2i j (lam x:e)signatures S ::= � j S; csubstitutions � ::= [] j �[x 7! e]Figure 2.1: The syntax for �patvalThe set FV(e) of free variables in an expression e is de�ned as follows.FV(x) = fxgFV(hi) = ;FV(c) = ;FV(c(e)) = FV(e)FV(p) e) = FV(e)nFV(p)FV(p) e j ms) = FV(p) e) [ FV(ms)FV(case e of ms) = FV(e) [ FV(ms)FV(lam x:e) = FV(e)nfxgFV(e1(e2)) = FV(e1) [ FV(e2)FV(let x = e1 in e2 end) = FV(e1) [ (FV(e2)nfxg)FV(�x f:u) = FV(u)nffgSubstitutions are de�ned in the standard way. We write e[�] as the result of applying substitu-tion � to e. Since we allow substituting an expression containing free variables for a variable, weemphasize that �-conversion is always performed if necessary to avoid capturing free variables.We use dom(�) for the domain of substitution �. If x 62 dom(�), we use �[x 7! e] for thesubstitution �0 such that dom(�0) = dom(�) [ fxg and�0(y) = ( �(y) if y is not x;e if y is x.We use [] for the empty substitution �, and [x 7! e] for the substitution � such that dom(�) = fxgand �(x) = e. Let �1 and �2 be two substitutions such that dom(�1) \ dom(�2) = ;. We de�ne�1 [ �2, the union of �1 and �2, as the substitution � such that dom(�) = dom(�1)[dom(�2) and�(x) = ( �1(x) if x 2 dom(�1);�2(x) if x 2 dom(�2).Similarly, �1 ��2, the composition of �1 and �2, is de�ned as the substitution � such that dom(�) =dom(�1) [ dom(�2), and �(x) = ( (�1(x))[�2] if x 2 dom(�1);�2(x) if x 2 dom(�2).



www.manaraa.com

2.1. UNTYPED �-CALCULUS WITH PATTERN MATCHING 17A substitution � is called a value substitution if �(x) is a value for all x 2 dom(�). We use e[�] forthe result of applying � to e and e[x1; : : : ; xn 7! e1; : : : ; en] for e[x1 7! e1; : : : ; xn 7! en].Proposition 2.1.1 Given a value form u and an expression e, u[x 7! e] is also a value form.Hence, value forms are closed under substitution.Proof This immediately follows from a structural induction on u.Proposition 2.1.2 Given values v1 and v2, v2[x 7! v1] is also a value. Hence, values are closedunder value substitution.Proof This immediately follows from a structural induction on v2.� v2 is a variable y. If y is x, then v2[x 7! v1] = v1 is a value. Otherwise, v2[x 7! v1] = y is alsoa value.� v2 is of form �y:e. Then v2[x 7! v1] = �y:e[x 7! v1] is obviously a value. Note we can assumethat there are no free occurrences of y in v1.All other cases can be readily veri�ed.Therefore, a signi�cant di�erence between value forms and values is that the former are closedunder all substitutions while the latter are only closed under value substitutions. This is theprimary reason why we require that u be a value form in (�x x:u). This requirement also rulesout troublesome expressions such as (�x x:x), which are of little use in practice.2.1.1 Dynamic SemanticsWe will present the operational semantics of �patval in terms of natural semantics (Kahn 1987). Thisapproach supports a short and clean formulation, but it prevents us from distinguishing a \stuck"program from a non-terminating one. An alternative would be using the \small-step" reductionsemantics, which does enable us to distinguish a \stuck" program from a non-terminating one butits use in our setting is more involved. We feel that natural semantics su�ces for our purpose,and therefore choose it over reduction semantics. Nonetheless, we will formulate the reductionsemantics of �patval when studying the operational equivalence relation in �patval .Given a pattern p and a value v, a judgement of form match(p; v) =) �, which means thatmatching a value v against a pattern p yields a substitution for the variables in p, can be derivedwith the application of the rules in Figure 2.2. Notice that the rule (match-prod) makes sensebecause p1 and p2 share no common variables.The natural semantics for �patval is given in Figure 2.3. Notice the presence of the rule (ev-var),which means that we allow the evaluation of open code, that is code containing the occurrences offree variables. The main reason is that we hope that the theorems we prove are also applicable toprogram transformation, where the manipulation of open code is a necessity.We will use constants 0; 1;�1; : : : for integers and nil; cons for list constructors in our examples.
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18 CHAPTER 2. PRELIMINARIES
match(x; v) =) [x 7! v] (match-var)match(hi; hi) =) [] (match-unit)match(p1; v1) =) �1 match(p2; v2) =) �2match(hp1; p2i; hv1; v2i) =) �1 [ �2 (match-prod)match(c; c) =) [] (match-cons-wo)match(p; v) =) �match(c(p); c(v)) =) � (match-cons-w)Figure 2.2: The pattern matching rules for �patval

x ,!0 x (ev-var)hi ,!0 hi (ev-unit)c ,!0 c (ev-cons-wo)e ,!0 vc(e) ,!0 c(v) (ev-cons-w)e1 ,!0 v1 e2 ,!0 v2he1; e2i ,!0 hv1; v2i (ev-prod)e0 ,!0 v0 match(v0; pk) =) � for some 1 � k � n ek[�] ,!0 v(case e0 of (p1 ) e1 j � � � j pn ) en)) ,!0 v (ev-case)(lam x:e) ,!0 (lam x:e) (ev-lam)e1 ,!0 (lam x:e) e2 ,!0 v2 e[x 7! v2] ,!0 ve1(e2) ,!0 v (ev-app)e1 ,!0 v1 e2[x 7! v1] ,!0 v2let x = e1 in e2 end ,!0 v2 (ev-let)(�x f:u) ,!0 u[f 7! (�x f:u)] (ev-�x)Figure 2.3: The evaluation rules for the natural semantics of �patval



www.manaraa.com

2.2. MINI-ML WITH PATTERN MATCHING 19Example 2.1.3 Let D1 be the following derivation.0 ,!0 0 (ev-cons-wo) nil ,!0 nil (ev-cons-wo)h0; nili ,!0 h0; nili (ev-prod)cons(h0; nili) ,!0 cons(h0; nili)Let D2 be the following derivation.match(x; 0) =) [x 7! 0] (match-var) match(xs; nil) =) [xs 7! nil] (match-var)match(hx; xsi; h0; nili) =) [x 7! 0; xs 7! nil] (match-prod)match(cons(h0; nili); cons(hx; xsi)) =) [x 7! 0; xs 7! nil] (match-cons-w)Let tail = �l:case l of cons(hx; xsi)) xs, and tail(cons(h0; nili)) ,!0 nil is derivable as follows.tail ,!0 tail (ev-lam) D1 D1 D2 nil ,!0 nil (ev-cons-wo)case cons(h0; nili) of cons(hx; xsi) ) xs ,!0 nil (ev-case)tail(cons(h0; nili)) ,!0 nil (ev-app)Notice that the rule (ev-case) introduces a certain amount of nondeterminism into the dynamicsemantics of �patval since it does not specify which matching clause is chosen if several are applicable.On the other hand, it is speci�ed in ML that pattern matching is done sequentially, that is, thechosen matching clause is always the �rst one which is applicable. However, this di�erence isconsiderably a minor issue since in theory we can always require that all matching clauses be notoverlappingTheorem 2.1.4 v ,!0 v for every value v in �patval .Proof This immediately follows from a structural induction on v. We present a few cases.� v = hv1; v2i. By induction hypothesis vi ,!0 vi are derivable for i = 1; 2. Hence we have thefollowing derivation. v1 ,!0 v1 v2 ,!0 v2v ,!0 v (ev-prod)� v = lam x:e. Then we have the following.v ,!0 v (ev-lam)All other cases are trivial.2.2 Mini-ML with Pattern MatchingWe now introduce an explicitly typed programming language (ML0) which basically extends mini-ML (Cl�ement, Despeyroux, Despeyroux, and Kahn 1986) with general pattern matching. Thisis a simply typed version of �patval . The syntax of ML0 is given in Figure 2.4. Given a context� = x1 : �1; : : : ; x : �n (we omit the leading � if the context is not empty), we always assume that allxi are distinct for i = 1; : : : ; n. We write dom(�) = fx1; : : : ; xng and �(xi) = �i for i = 1; : : : ; n.A signature declares a list of constructors associated with their types. Notice that the type of aconstructor is required to be of form either � or � ! �, where � is a (user-de�ned) base type, thatis, a constructor is either without an argument or with exactly one argument.
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20 CHAPTER 2. PRELIMINARIESbase types � ::= bool j int j (other user de�ned datatypes)types � ::= � j 1 j �1 � �2 j �1 ! �2patterns p ::= x j c(p) j hi j hp1; p2imatches ms ::= (p) e) j (p) e j ms)expressions e ::= x j hi j he1; e2i j c(e) j (case e of ms) j (lam x : �:e) j e1(e2)j let x = e1 in e2 end j (�x f : �:u)value forms u ::= c(u) j hi j hu1; u2i j (lam x : �:e)values v ::= x j c(v) j hi j hv1; v2i j (lam x : �:e)contexts � ::= � j �; x : �signatures S ::= � j S; c : � j S; c : � ! �substitutions � ::= [] j �[x 7! e]Figure 2.4: The syntax for ML0x # � � x : � (pat-var)hi # 1� � (pat-unit)p1 # �1 � �1 p2 # �2 � �2hp1; p2i # �1 � �2 � �1;�2 (pat-prod)S(c) = �c # � � � (pat-cons-wo)S(c) = � ! � p # � � �0c(p) # � � �0 (pat-cons-w)Figure 2.5: The pattern matching rules for ML02.2.1 Static SemanticsGiven a pattern p and a type � , we can derive a judgement of form p # � � � with the rules inFigure 2.5, which reads that checking pattern p against type � yields a context �.In the following examples, we assume that intlist is a base type and nil; cons are constructorsof type intlist and int � intlist! intlist, respectively.Example 2.2.1 The following is a derivation of cons(hx; nili) # intlist� x : int.S(cons) = int � intlist! intlistx # int� x : int (pat-var) S(nil) = intlistnil # intlist� � (pat-cons-wo)hx; nili # int � intlist� x : int (pat-prod)cons(hx; nili) # intlist� x : int (pat-cons-w)The typing rules for ML0 are given in Figure 2.6. We present an example of type inference in
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2.2. MINI-ML WITH PATTERN MATCHING 21�(x) = �� ` x : � (ty-var)S(c) = �� ` c : � (ty-cons-wo)S(c) = � ! � � ` e : �� ` c(e) : � (ty-cons-w)� ` hi : 1 (ty-unit)� ` e1 : �1 � ` e2 : �2� ` he1; e2i : �1 � �2 (ty-prod)p # �1 � �0 �;�0 ` e : �2� ` p) e : �1 ) �2 (ty-match)� ` p) e : �1 ) �2 � ` ms : �1 ) �2� ` (p) e j ms) : �1 ) �2 (ty-matches)� ` e : �1 � ` ms : �1 ) �2� ` (case e of ms) : �2 (ty-cases)�; x : �1 ` e : �2� ` (lam x : �1:e) : �1 ! �2 (ty-lam)� ` e1 : �1 ! �2 � ` e2 : �1� ` e1(e2) : �2 (ty-app)� ` e1 : �1 �; x : �1 ` e2 : �2� ` (let x = e1 in e2 end) : �2 (ty-let)�; f : � ` u : �� ` (�x f : �:u) : � (ty-�x)Figure 2.6: The typing rules for ML0ML0.Example 2.2.2 The following is a derivation of � ` (lam x : int:cons(hx; nili)) : int! intlist.S(cons) = int � intlist! intlist x : int ` x : int S(nil) = intlistx : int ` nil : intlist (ty-cons-wo)x : int ` hx; nili ` int � intlist (ty-prod)x : int ` cons(hx; nili) : intlist (ty-cons-w)� ` (lam x : int:cons(hx; nili)) : int! intlist (ty-lam)Given �;�0 and �, a judgement of form � ` � : �0 can be derived with the application of thefollowing rules. Such a judgement means that dom(�) = dom(�0) and � ` �(x) : �0(x) is derivablefor all x 2 dom(�).� ` [] : � (subst-empty) � ` � : �0 � ` e : �� ` �[x 7! e] : �0; x : � (subst-var)
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22 CHAPTER 2. PRELIMINARIESThe next proposition shows that judgement � ` � : �0 has the intended meaning.Proposition 2.2.3 We have the following.1. If � ` � : �0 is derivable, then dom(�) = dom(�0) and � ` �(x) : �0(x) is derivable for everyx 2 dom(�).2. Given �1 and �2 such that dom(�1) \ dom(�2) = ;, then the following rule is admissible.� ` �1 : �1 � ` �2 : �2� ` �1 [ �2 : �1;�2 (subst-subst)Proof (1) follows from a structural induction on the derivation of � ` � : �0 and (2) follows froma structural induction on the derivation of � ` �2 : �2. We present the proof for (2).� �2 = []. This is trivial.� �2 = �02[x 7! e]. Suppose �2 = �02; x : � . Then we have the following derivation.� ` �02 : �02 � ` x : �� ` �02[x 7! e] : �02; x : � (subst-var)By induction hypothesis, � ` �1 [ �02 : �1;�02 is derivable. This leads to the followingderivation. � ` �1 [ �02 : �1;�02 � ` x : �� ` (�1 [ �02)[x 7! e] : �1;�02; x : � (subst-var)Since �1 [ �2 is (�1 [ �02)[x 7! e] and �2 is �02; x : � , we are done.Lemma 2.2.4 If both �;�0 ` e : � and � ` � : �0 are derivable, then � ` e[�] : � is derivable.Proof The proof follows from a structural induction on the derivation D of �;�0 ` e : � . Wepresent a few cases.�(x) = �D =�;�0 ` x : � Then x 62 dom(�0). Since dom(�) = dom(�0) by Proposition 2.2.3, x 62dom(�). This implies x[�] = x. Clearly, � ` x : � is derivable.�0(x) = �D =�;�0 ` x : � Since dom(�) = dom(�0) by Proposition 2.2.3, x 2 dom(�). This impliesx[�] = �(x). Note � ` �(x) : � is derivable by Proposition 2.2.3 since � ` � : �0 is.�;�0; x : �1 ` e1 : �2D =�;�0 ` (lam x : �1:e1) : �1 ! �2 Then we can derive �; x : �1;�0 ` e1 : �2 and �; x :�1 ` � : �0. By induction hypothesis, �; x : �1 ` e1[�] : �2 is derivable, and this leads to thefollowing derivation. �; x : �1 ` e1[�] : �2� ` (�x : �1:e1[�]) : �2 (ty-lam)
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2.2. MINI-ML WITH PATTERN MATCHING 23(lam x : �:e) ,!0 (lam x : �:e) (ev-lam)e1 ,!0 (lam x : �:e) e2 ,!0 v2 e[x 7! v2] ,!0 ve1(e2) ,!0 v (ev-app)(�x f : �:u) ,!0 u[f 7! (�x f : �:u)] (ev-�x)Figure 2.7: Some evaluation rules for the natural semantics of ML0Note x 62 dom(�0) = dom(�). Since � ` � : �0, x 62 FV(�(y)) for all y 2 dom(�). Therefore,(�x : �1:e1)[�] = �x : �1:e1[�].All other cases can be handled similarly.If a value v matches a pattern p, then match(p; v) =) � is derivable for some substitution �.The next lemma shows that if the type of v is given, then the type of �(x) for every x 2 dom(�)is �xed. This is crucial to proving the type preservation theorem for ML0.Lemma 2.2.5 If � ` v : � , p # � � �0 and match(p; v) =) � are derivable, then � ` � : �0 isderivable.Proof By a structural induction on the derivation D of p # ���0. We present one case as follows.match(p1; v1) =) �1 match(p2; v2) =) �2D = match(hp1; p2i; hv1; v2i) =) �1 [ �2 By induction hypothesis, � ` �i : �i arederivable for i = 1; 2. Hence we have the following derivation since (subst-subst) is anadmissible rule by Proposition 2.2.3.� ` �1 : �1 � ` �2 : �2� ` �1 [ �2 : �1;�2 (subst-subst)All other cases are trivial.2.2.2 Dynamic SemanticsThe natural semantics of ML0 is almost the same as that of �patval . The only changes are made inthe formulation of the rules in Figure 2.7, where types are carried around during evaluation. Allother rules are unchanged.Notice that types play no rôle in the formulation of the evaluation rules in Figure 2.7. To makethis precise, we de�ne a type erasure function j � j as follows, which maps an expression in ML0 into
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24 CHAPTER 2. PRELIMINARIESone in �patval . jxj = xjcj = cjp) ej = p) jejj(p) e j ms)j = p) jej j jmsjjcase e of msj = case jej of jmsjjlam x : �:ej = lam x:jejje1(e2)j = je1j(je2j)jlet x = e1 in e2 endj = let x = je1j in je2j endj�x f : �:uj = �x f:jujTheorem 2.2.6 Given an expression e in ML0, we have the following.1. If e ,!0 v is derivable in ML0, then jej ,!0 jvj is derivable in �patval .2. if jej ,!0 v0 is derivable in �patval , then e ,!0 v is derivable in ML0 for some v such thatjvj = v0.Proof (1) and (2) follow from a structural induction on the derivations of e ,!0 v and jej ,!0 v0,respectively.Theorem 2.2.6 clearly exhibits the indi�erence of types to evaluation. However, one great advantageof imposing a type system on a language is that we are then able to prove certainly invariantproperties about the evaluation of well-typed expressions.2.2.3 SoundnessWe are now ready to present the type preservation theorem for ML0, which asserts that the evalu-ation rules for the natural semantics of ML0 does not alter the types of the evaluated expressions.Notice that this theorem is closely related to but di�erent from the subject reduction theorem (notpresented in the thesis), which asserts that the (small-step) reduction semantics of ML0 is typepreserving.The type preservation theorem is a fundamental theorem which relates the static semantics ofML0, expressed in the form of type inference rules, to the dynamic semantics of ML0, expressed inthe form of natural semantics.Since we allow the evaluation of open code, the formulation of the following type preservationtheorem is slightly di�erent from the standard one, which deals with only closed code and thereforeneeds no variable context to keep track of free variables in the code.Theorem 2.2.7 (Type preservation for ML0) Given e; v where e ,!0 v is derivable. If � ` e : � isderivable then � ` v : � is also derivable.Proof This follows from a structural induction on the derivation D of e ,!0 v. We present a fewcases.D =x ,!0 x Trivially, � ` x : � is derivable since � ` x : � is derivable.
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2.2. MINI-ML WITH PATTERN MATCHING 25e0 ,!0 v0 match(v0; pk) =) � for some 1 � k � n ek[�] ,!0 vD = (case e0 of (p1 ) e1 j � � � j pn ) en)) ,!0 v Then we have a deriva-tion of the following form since � ` (case e0 of (p1 ) e1 j � � � j pn ) en)) : � is derivable.� ` e0 : �1 � ` (p1 ) e1 j � � � j pn ) en) : �1 ) �� ` (case e0 of (p1 ) e1 j � � � j pn ) en)) : � (ty-case)By induction hypothesis, � ` v0 : �1 is derivable. Notice � ` pi ) ei : �1 ) � are derivablefor 1 � i � n. Hence pk # �1 � �0 is derivable for some �0 and �;�0 ` ek : � is derivable.By Lemma 2.2.5, � ` � : �0 is derivable. This leads to a derivation of � ` ek[�] : � byLemma 2.2.4. By induction hypothesis, � ` v : � is derivable.e1 ,!0 (lam x : �1:e01) e2 ,!0 v2 e01[x 7! v2] ,!0 vD = e1(e2) ,!0 v Since � ` e1(e2) : � is derivable, wehave a derivation of the following form.� ` e1 : �1 ! � � ` e2 : �1� ` e1(e2) : � (ty-app)By induction hypothesis, both � ` (�x : �1:e01) : �1 ! � and � ` v2 : �1 are derivable.Hence, � ` e01[x 7! v2] : � is derivable following Lemma 2.2.4. Again by induction hypothesis,� ` v : � is derivable.e1 ,!0 v1 e2[x 7! v1] ,!0 vD =(let x = e1 in e2 end) ,!0 v Since � ` let x = e1 in e2 end : � is derivable, we havea derivation of the following form.� ` e1 : �1 �; x : �1 ` e2 : �� ` let x = e1 in e2 end : � (ty-let)By induction hypothesis, � ` v1 : �1 is derivable. Therefore, � ` e2[x 7! v1] : � is derivablefollowing Lemma 2.2.4. This yields that � ` v : � is derivable by induction hypothesis.D =(�x f : �:u) ,!0 u[f 7! (�x f : �:u)] Since � ` (�x f : �:u) : � is derivable, we have aderivation of the following form. �; f : � ` u : �� ` (�x f : �:u) : � (ty-�x)Hence, � ` u[f 7! (�x f : �:u)] : � is derivable following Lemma 2.2.4.All other cases can be handled similarly.Notice that in the case where e is let x = e1 in e2 end, the derivation of � ` e2[x 7! v1] : �can be more complex that that of �; x : �1 ` e2 : � . Therefore, the proof could not have succeededif we had proceeded by a structural induction on the derivation of � ` e : � .
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26 CHAPTER 2. PRELIMINARIES2.3 Operational EquivalenceWe present some basics on operational equivalence in this section, which will be used later inChapter 4 and Chapter 5 to prove the correctness of elaboration algorithms. This is also anappropriate place for us to mention something about the reduction semantics since it is based onthe notion of evaluation context that we introduce as follows.De�nition 2.3.1 We present the de�nition of evaluation contexts and (general) contexts as fol-lows.(evaluation contexts) E ::= [] j hE; ei j hv;Ei j c(E) j case E of msj E(e) j v(E) j let x = E in e end(match contexts) Cm ::= p) C j (p) e j Cm) j (p) C j ms)(contexts) C ::= [] j hC; ei j he; Ci j c(C) j case C of ms j case e of Cmj lam x:(C) j C(e) j e(C)j let x = C in e end j let x = e in C end j �x f:CGiven a context C and an expression e, C[e] stands for the expression formulated by replacingwith e the hole [] in C. We emphasize that this replacement is variable capturing . For instance,given C = lam x:[], then C[x] = lam x:x. Given two contexts C1 and C2, C1[C2] is the contextformulated by replacing with C2 the hole [] in C1.Proposition 2.3.2 We have the following.1. Given two evaluation contexts E1 and E2, E1[E2] is also an evaluation context.2. Given an evaluation context E and a value v, E[x 7! v] is also an evaluation context.3. Given an evaluation context E and an expression e, no free variables in e are captured whenthe hole [] in E is replaced with e.Proof (1) simply follows from a structural induction on E1. We present a few cases.� E1 = []. Then E1[E2] = E2 is an evaluation context.� E1 = let x = E01 in e end. Then E01[E2] is an evaluation context by induction hypothesis.Hence, E1[E2] = let x = E01[E2] in e end is also an evaluation context� E1 = case E01 of ms. Then E01[E2] is an evaluation context by induction hypothesis. Hence,E1[E2] = case E01[E2] of ms is also an evaluation contextThe rest of the cases can be handled similarly.We omit the proofs of (2) and (3), which are based on a structural induction on E.De�nition 2.3.3 We de�ne as follows redexes and their reductions on the left-hand and right-handsides of 7!, respectively. (lam x:e)(v) 7! e[x 7! v]let x = v in e end 7! e[x 7! v]�x f:u 7! u[f 7! (�x f:u)]case v of (p1 ) e1 j � � � j pn ) en) 7! ek[�];where match(v; pk) =) � is derivable for some 1 � k � n
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2.3. OPERATIONAL EQUIVALENCE 27The one-step reduction relation 7! is de�ned as follows. e1 7! e2 if and only if e1 = E[e] for someevaluation context E and redex e and e2 = E[e0], where e0 is the reduction of e. We also say e1evaluates to e2 in one step if e1 7! e2.Notice that the relation 7! is context-sensitive, that is, we cannot in general infer C[e] 7! C[e0]even if we have e 7! e0. However, this is true by Proposition 2.3.2 if C is an evaluation context.Let 7!� be the re
exive and transitive closure of 7!. The reduction semantics of �patval states that eevaluates to v if e 7!� v holds. We point out that a redex of form case v of ms may have di�erentreductions. Therefore, this reduction semantics contains a certain amount of nondeterminism.Clearly, Proposition 2.3.2 implies E[e] 7!� E[e0] if e 7!� e0. We will use this property implicitlyin the following presentation. The next theorem relates ,!0 and 7!� to each other.Proposition 2.3.4 We have the following.1. If e is not a value, neither is E[e].2. If e = E[r] for some redex r and e = E1[e1] for some e1 which is not a value, then e1 = E2[r]for some E2 and E = E1[E2].3. If E1[r1] = E2[r2] for redexes r1 and r2, then E1 = E2 and r1 = r2.4. If e = E[e1] 7!� v, then there is some value v1 such that e = E[e1] 7!� E[v1] 7!� v.Proof (1) simply follows from the de�nition of values. We now proceed to prove (2) by astructural induction on E1.� E1 = []. Then this is trivial.� E1 = hE01; e2i. Then e = hE01[e1]; e2i. Since e1 is not a value, (1) implies that E01[e1] is not avalue. So E must be of form hE0; e2i. By induction hypothesis, e1 = E2[r] for some E2 suchthat E0 = E01[E2]. Note E1[E2] = hE01[E2]; e2i = hE0; e2i = E, and we are done.� E1 = hv;E01i. If E is of form hE0; e2i, then v = E0[r]. Since this contradicts (1), E mustbe of form hv;E0i. By induction hypothesis, e1 = E2[r] for some E2 such that E0 = E01[E2]Therefore, E = E1[E2], and this concludes the case.The rest of the cases can be treated similarly. (3) and (4) immediately follow from (2).Clearly, Proposition 2.3.4 (3) implies that if e can be reduced then there exist a unique evaluationcontext E and a redex r such that e = E[r]. However, r may have di�erent reductions if r is ofform case v of ms.Theorem 2.3.5 Given an expression e and a value v in �patval , e ,!0 v if and only if e 7!� vProof We write e1 7!n e2 to mean that e1 evaluates to e2 in n steps. Assume e 7!n v. Weprove e ,!0 v by an induction on n and the structure of e, lexicographically ordered. We do a caseanalysis on the structure of e.
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28 CHAPTER 2. PRELIMINARIES� e = he1; e2i. By Proposition 2.3.4 (4), there exists 0 � i; j � n such that e1 7!i v1 ande2 7!j v2 for some v1 and v2. By induction hypothesis, we can derive e1 ,!0 v1 and e2 ,!0 v2.This yields the following. e1 ,!0 v1 e2 ,!0 v2e ,!0 v (ev-prod)� e = e1(e2). Then there exists 0 � i; j < n such that e1 7!i v1 and e2 7! v2 for some v1 andv2, where v1 is of form lam x:e01. Hence we have the following.e 7! � � � 7! (lam x:e01)(v2) 7! e01[x 7! v2] 7! � � � 7! vBy induction hypothesis, e1 ,!0 lam x:e01, e2 ,!0 v2 and e01[x 7! v2] ,!0 v are derivable. Thisyields the following.e1 ,!0 lam x:e01 e2 ,!0 v2 e01[x 7! v2] ,!0 ve ,!0 v (ev-app)� e = �x f:u. Then e 7! u[f 7! (�x f:u)]. Clearly, we have the following.e ,!0 u[f 7! (�x f:u)] (ev-�x)All other cases can be treated similarly.We now assume that e ,!0 v is derivable and prove e 7!� v by a structural induction on thederivation D of e ,!0 v. We present a few cases.e1 ,!0 v1 e2 ,!0 v2D = he1; e2i ,!0 hv1; v2i By induction hypothesis, We have e1 7!� v1 and e2 7!� v2. Thisyields the following since both h[]; e2i and hv1; []i are evaluation contexts.e = he1; e2i 7!� hv1; e2i 7!� hv1; v2ie0 ,!0 v0 match(v0; pk) =) � for some 1 � k � n ek[�] ,!0 vD = (case e0 of (p1 ) e1 j � � � j pn ) en)) ,!0 v By induction hypothesis,we have e0 7!� v0 and ek[�] 7!� v. This leads to the following.case e0 of (p1 ) e1 j � � � j pn ) en) 7!� case v0 of (p1 ) e1 j � � � j pn ) en) 7! ek[�] 7!� ve1 ,!0 (lam x:e01) e2 ,!0 v2 e01[x 7! v2] ,!0 vD = e1(e2) ,!0 v By induction hypothesis, we have e1 7!�(lam x:e01), e2 7!� v2 and e01[x 7! v2] 7!� v. This leads to the following.e = e1(e2) 7!� (lam x:e01)(e2) 7!� (lam x:e01)(v2) 7! e01[x 7! v2] ,!0 vAll other cases can be treated similarly.We will present elaboration algorithms in Chapter 4 and Chapter 5, which map a programwritten in an external language into one in an internal language. We will have to show that theelaboration of a program preserves its operational semantics. For this purpose, we introduce thenotion of operational equivalence in �patval .
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2.3. OPERATIONAL EQUIVALENCE 29De�nition 2.3.6 Given two expression e1 and e2 in �patval , e1 is operationally equivalent to e2 ifthe following holds.� Given any context C, C[e1] 7!� hi is derivable if and only if C[e2] 7!� hi is.We write e1 �= e2 if e1 is operationally equivalent to e2.Clearly�= is an equivalence relation. Our aim is to show that let x = e in E[x] end is operationallyequivalent to E[e] for any evaluation context E containing no free occurrences of x. However, thisseemingly easy task turns out to be tricky. We will explain the need for the following de�nition inthe proof of Lemma 2.3.11.De�nition 2.3.7 The extended values and extended evaluation contexts are de�ned as follows.(extended values) w := x j c(w) j hi j hw1; w2i j (lam x:e) j (�x f:u)(extended evaluation contexts) F := [] j hF; ei j hw;F i j c(F ) j case F of msj F (e) j w(F ) j let x = F in e ende1 7!F e2 if e1 = F [e] for some F and redex e and e2 = F [e0], where e0 is the reduction of e. Let7!�F be the re
exive and transitive closure of 7!F .Clearly, the di�erence between extended values and values is that expression of form �x f:u belongsthe former but not latter. Informally speaking, it allows us to treat an expression of form �x f:uas a value when an extended evaluation context is formulated. However, �x f:u should not beregarded as a value when a redex is formulated. For instance, (lam x:x)(�x f:u) is not a redex.Unlike the evaluation contexts, the extended evaluation contexts do not enjoy Proposition 2.3.4(3). For instance, given e = Fix(I(I)), where Fix = �x f:lam x:f(x) and I = (lam x:x), e canbe reduced in one step to (lam x:F ix(x))(I(I)) or to (�x f:lam x:f(x))(I). The next propositionstates some relation between values (evaluation contexts) and extended values (extended evaluationcontexts).Proposition 2.3.8 We have the following.1. Given any extended value w, w 7!� v for some value v.2. Given any extended evaluation context F and expression e, F [e] 7!� E[e] for some evaluationcontext E, where E is determined by F .Proof (1) follows from a structural induction on w. We present an interesting case.� w is of form �x f:u. Then w 7! u[f 7! w]. Since u[f 7! w] is a value, we are done.We prove (2) by a structural induction on F . Here are a few cases.� F is of form w(F1). Then by induction hypothesis F1[e] 7!� E1[e] for some E1. By (1),w 7!� v for some v. Hence, we haveF [e] = w(F1[e]) 7!� v(F1[e]) 7!� v(E1[e]) = E[e]for E = v(E1).
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30 CHAPTER 2. PRELIMINARIES� F is of form let x = F1 in e1 end. By induction hypothesis, F1[e] 7!� E1[e] for some E1.Hence, we haveF [e] = let x = F1[e] in e1 end 7!� let x = E1[e] in e1 end = E[e]for E = let x = E1 in e1 end.All other cases can be treated similarly.We now relate 7!F to 7!. Clearly, e1 7! e2 implies e1 7!F e2 since an evaluation context is anextended evaluation context. In the other direction, we have the following.Lemma 2.3.9 Given an expression e and a value v in �patval , if e 7!�F v then e 7!� v.Proof Assume e 7!nF v and we proceed by an induction on n. If n = 0 then it is trivial.Assume e = F [e1] 7!F F [e01] 7!�F v for some F , where e1 is a redex and e01 is its reduction. Byinduction hypothesis, F [e01] 7!� v. Note that F [e1] 7!� E[e1] and F [e01] 7!� E[e01] for some E byProposition 2.3.8 (2). This leads toe = F [e1] 7!� E[e1] 7! E[e01] 7!� vTherefore, the operational semantics of �patval is not a�ected even if we treat expressions of form�x f:u as values when formulating evaluation contexts.De�nition 2.3.10 A �F -redex r is an expression of form let x = e in F [x] end, where there areno free occurrences of x in F . e1 !�F e2 if e1 is of form C[r] for some �F -redex r = let x =e in F [x] end and e2 = C[F [e]]. We write !��F for the re
exive and transitive closure of !�FLemma 2.3.11 Suppose e1 !�F e2. We have the following.1. If e1 7!F e01, then for some e02, e2 7!0=1F e02 and e01 !��F e02, where e2 7!0=1F e02 means eithere2 = e02 or e2 7!F e02.2. If e2 7!F e02, then either e1 7!F e2 or for some e01, e1 7!F e01 and e01 !��F e02.Proof For (1), we proceed by a structural induction on e1.� e1 is of form (�x f:u1). Then e2 = (�x f:u2) for some u2 such that u1 !�F u2. Notee01 = u1[f 7! e1]. Let e02 = u2[f 7! e2], then e2 7!F e02. If r is a �F -redex in u1, then weobserve that r[f 7! e1] is a �F -redex in e01. This is exactly the case which would not gothrough if we had not de�ned the notion of extended evaluation context.With this observation, it is not di�cult to see that e01 !��F e02.All other cases can be handled similarly.For (2), we also proceed by a structural induction on e1.� e1 = let x = w in F [x] end. Then there are several subcases.
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2.3. OPERATIONAL EQUIVALENCE 31{ e1 !�F let x = w0 in F [x] end = e2, where w !�F w0. We have e1 7!F F [w] !�FF [w0] and e2 7!F F [w0]. So e02 = F [w0]. Let e01 = F [w], and we are done.{ e1 !�F F [w] = e2. Then e1 7!F e2.{ e1 !�F let x = w in F 0[x] end = e2, where F [x]!�F F 0[x]. We have e1 7!F F [w]!�FF 0[w] and e2 7!F F 0[w]. So e02 = F 0[w]. Let e01 = F [w] and we are done.All other cases can be treated similarly.Lemma 2.3.12 Let e1 and e2 be two expressions in �patval such that e1 !��F e2. We have thefollowing.1. If e1 7!�F v1 for some value v1, then e2 7!�F v2 for some value v2 such that v1 !��F v2.2. If e2 7!�F v2 for some value v2, then e1 7!�F v1 for some value v1 such that v1 !��F v2.Proof Assume e1 7!nF v1. We prove (1) by induction on n.1. n = 0. Then this is trivial.2. n > 0. Then e1 7!F e01 7!�F v1 for some e01. Then by Proposition 2.3.11 (1), there exists e02such that e2 7!0=1F e02 and e01 !��F e02. By induction hypothesis, e02 7!�F v2 for some value v2such that v1 !��F v2.Assume e2 7!nF v2. We now prove (2) by induction on n.1. n = 0. Then e1 !m�F e2 = v2 for some m. It is straightforward to prove that e1 7!�F v1 forsome v1 such that v1 !��F v2 by induction on m.2. n > 0. Then e2 7!F e02 7!�F v2 for some e02. Then by Proposition 2.3.11 (2), we have twocases.� e1 7!F e2. Then e1 7!�F v2. Hence, let v1 = v2 and we are done.� e1 7!F e01 for some e01 such that e01 !��F e02. By induction hypothesis, e01 7!�F v1 for somevalue v1 such that v1 !��F v2.Therefore, both (1) and (2) hold.Corollary 2.3.13 For every extended evaluation context F and every expression e in �patval ,let x = e in F [x] end �= F [e]holds if x has no occurrences in F .Proof Notice let x = e in F [x] end is a �F -redex. Hence, we haveC[let x = e in F [x] end]!�F C[F [e]]:Suppose C[let x = e in F [x] end] 7!� hi. Then C[F [e]] 7! v follows from Proposition 2.3.12(1) such that hi 7!� v. Hence v = hi.
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32 CHAPTER 2. PRELIMINARIESSuppose C[F [e]] 7!� hi. Then C[let x = e in F [x] end] 7! v follows from Proposition 2.3.12(2) such that v 7!� hi. This implies v = hi since v is a value.Therefore, let x = e in F [x] end �= F [e] by the de�nition of operational equivalence.Since an evaluation context is an extended evaluation context, we have derive the followingoperational equivalence for every evaluation context E in which there are no occurrences of x.let x = e in E[x] end �= E[e]This equivalence will still hold after we extend the language with e�ects such as references andexceptions, although we will no longer present a proof.Lastly, we list some properties which can be proven similarly.Proposition 2.3.14 we have the following.1. (lam x:(lam y:e)(x)) �= (lam y:e).2. (�x f:u) �= u[f 7! (�x f:u)].3. let x = w in e end �= e[x 7! w].The need for introducing extended values and extended evaluation contexts stems from theadoption of the rule (ev-�x) in which the non-value (�x f:u) is substituted for a variable f , whichis regarded as a value. We now suggest two non-standard alternatives to coping with this problem.1. The �rst alternative is that we classify variables into two categories. One category containsthe variables which are regarded as values and the other category contains the variables whichare not regarded as values. The variables bound by lam must be in the �rst category and thevariables bound by �x must belong to the second one. This avoids substituting non-valuesfor variables which are regarded as values.2. The second alternative is to replace the rule (ev-�x) with the following evaluation rules.This readily guarantees that only values can be substituted for variables.(�x f:u) ,!0 u[f 7! u�]where u� = u[f 7! (�x f:u)]. This strategy is clearly justi�ed by Proposition 2.3.14 (2).2.4 SummaryWe started with �patval , a untyped �-calculus with general pattern matching. The importance of�patval lies in its operational semantics, which is given in the style of natural semantics. We thenintroduced ML0, the typed version of �patval . An important observation at this point is that typesplay no rôle in program evaluation. As we shall see, this property will be kept valid in all the typedlanguages that we introduce later in this thesis.However, we emphasize that recent studies (Tarditi, Morrisett, Cheng, Stone, Harper, and Lee1996; Morrisett, Walker, Crary, and Glew 1998) have convincingly shown that the use of types canbe very helpful for detecting errors in compiler writing and enhance the performance of compiled
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2.4. SUMMARY 33code. We will actually demonstrate in Chapter 9 that dependent types can indeed lead to moree�cient code.In addition, we studied the operation equivalence relation in �patval , which will be used later toprove the correctness of some type-checking algorithms. We are now ready to introduce dependenttypes into ML0.
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34 CHAPTER 2. PRELIMINARIES
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Chapter 3Constraint DomainsOur enriched language will be parameterized over a constraint domain, from which the type indexobjects are drawn. Typical examples of constraints include linear equalities and inequalities overintegers, equations over the algebraic terms (also called the Herbrand domain), �rst-order logicformulas over a �nite domain, etc. Much of the work in this chapter is inspired and closely relatedto the CLP (Constraint Logic Programming) languages presented in (Ja�ar and Maher 1994).3.1 The General Constraint LanguageWe emphasize that the general constraint language itself is typed. In order to avoid potentialconfusion we call the types in the constraint language index sorts. We use b for base index sortssuch as o for propositions and int for integers. A signature � declares a set of function symbolsand associates with every function symbol an index sort de�ned below. A �-structure D consistsof a set dom(D) and an assignment of functions to the function symbols in �.We use f for interpreted function symbols, p for atomic predicates (that is, functions of sort
 ! o) and we assume we have constants such as equality, truth values > and ?, conjunction ^,and disjunction _, all of which are interpreted as usual.index sorts 
 ::= b j 1 j 
1 � 
2 j fa : 
 j Pgindex propositions P ::= > j ? j p(i) j P1 ^ P2 j P1 _ P2Here fa : 
 j Pg is the subset index sort for those elements of index sort 
 satisfying propositionP , where P is an index proposition. For instance, nat is an abbreviation for fa : int j a � 0g, thatis, nat is a subset index sort of int.We use a for index variables in the following formulation. We assume that there exists apredicate := of sort 
 � 
 ! o for every index sort 
, which is interpreted as equality. Also weemphasize that all function symbols declared in � must be associated with index sorts of form
 ! b or b. In other words, the constraint language is �rst-order.index objects i; j ::= a j f(i) j hi j hi; ji j fst(i) j snd(i)index contexts � ::= � j �; a : 
 j �; Pindex constraints � ::= i := j j > j �1 ^ �2 j P � � j 8a : 
:� j 9a : 
:�index substitutions � ::= [] j �[a 7! i]satis�ability relation � j= �35
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36 CHAPTER 3. CONSTRAINT DOMAINSAn index variable can be declared at most once in an index context. The domain of an indexcontext is de�ned as follows.dom(�) = ; dom(�; a : 
) = dom(�) [ fag dom(�; P ) = dom(�)Also �(a) = 
 for every a 2 dom(�) if a : 
 is declared in �. A judgement of the form � ` � : �0can be derived with the use of the following rules.� ` [] : � (subst-iempty)� ` � : �0 � ` i : 
� ` �[a 7! i] : �0; a : 
 (subst-ivar)� ` � : �0 � j= P [�]� ` � : �0; P (subst-prop)Proposition 3.1.1 If � ` � : �0 is derivable, then dom(�) = dom(�0) and � ` �(a) : �0(a) isderivable for every a 2 dom(�).Proof This simply follows from a structural induction on the derivation of � ` � : �0, parallel tothat of Proposition 2.2.3.We present the sort formation and sorting rules for type index objects in Figure 3.1. We explainthe meanings of these judgements as follows. A judgement of form ` �[ictx] means that � is avalid index context, and a judgement of form � ` 
 : �s means that 
 is a valid sort under �, anda judgement of form � ` i : 
 means that i is of sort 
 under �. Since the constraint language isexplicitly sorted, sort-checking can be done straightforwardly following the presented sorting rules.Details on sort-checking, which involves constraint satisfaction, can be found in Subsection 4.2.6.We could certainly allow any �rst-order logic formula to be a constraint. However, in practice,we often consider a subset of formulas closed under the above de�nition to be constraints. We useL for a class of �-formulas (constraints), and we call the pair hD;Li a constraint domain, whereD is a �-structure. Sometimes, we simply use C for a constraint domain.We de�ne (�)� as follows.(�)� = �(a : b)� = 8a : b:�(a : 
1 � 
2)� = (a1 : 
1)(a2 : 
2)�[a 7! ha1; a2i](�; fa : 
 j Pg)� = (�)(a : 
)(P � �)(�; P )� = (�)(P � �)We say that � j= � is satis�able in C = hD;Li if (�)� is true in D in the model-theoretic sense,that is, the interpretation of (�)� in D is true.We also present some basic rules for reasoning about the satis�ability of � j= � as follows. Notethat there also exist other rules such as induction and model checking, which are associated withcertain special constraint domains.
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3.1. THE GENERAL CONSTRAINT LANGUAGE 37
` �[ictx] (ictx-empty)` �[ictx] � ` 
 : �s` �; a : 
[ictx] (ictx-ivar)` �[ictx]� ` b : �s (sort-base)` �[ictx]� ` 1 : �s (sort-unit)� ` 
1 : �s � ` 
2 : �s� ` 
1 � 
2 : �s (sort-prod)� ` 
 : �s �; a : 
 ` P : o� ` fa : 
 j Pg : �s (sort-subset)` �[ictx] �(a) = 
� ` a : 
 (index-var)` �[ictx]� ` hi : 1 (index-unit)� ` i1 : 
1 � ` i2 : 
2� ` hi1; i2i : 
1 � 
2 (index-prod)� ` i : 
1 � 
2� ` fst(i) : 
1 (index-�rst)� ` i : 
1 � 
2� ` snd(i) : 
2 (index-second)� ` a1 : fa2 : 
 j Pg� ` a1 : 
 (index-var-subset)� ` i : 
 �; a : 
 ` P : o � j= P [a 7! i]� ` i : fa : 
 j Pg (index-subset)�(f) = b� ` f : b (index-cons)�(f) = 
 ! b � ` i : 
� ` f(i) : b (index-fun)Figure 3.1: The sort formation and sorting rules for type index objects
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38 CHAPTER 3. CONSTRAINT DOMAINS� j= �1 � j= �2� j= �1 ^ �2 (sat-conj) �; P j= �� j= P � � (sat-impl)�; a : 
 j= �� j= 8a : 
:� (sat-forall) � j= �[a 7! i] � ` i : 
� j= 9a : 
:� (sat-exists)Clearly, these rules are not enough. We have to be able to verify the derivability of a satis�abilityrelation of form � j= P . We say that � j= P is derivable in a constraint domain C = hD;Li if (�)Pis satis�able in dom(D). In order to verify whether (�)P is satis�able in D, one may use somespecial methods associated with C such as model-checking for �nite domains. We can readily provethat (�)� is satis�able if � j= � is derivable. This establishes the soundness of this approach tosolving constraints. Clearly, this may not be a complete approach. For instance, even if 9a : 
:� issatis�able in dom(D), there may not exist an index i expressible in the constraint language suchthat �[a 7! i] is satis�able. Also, the special methods employed to verify the the satis�ability of(�)P may not be complete.Proposition 3.1.2 We have the following.1. If both � j= P and �; P j= � are derivable, then � j= � is derivable.2. If both � ` i : 
 and �; a : 
 j= � are derivable, then � j= �[a 7! i] is also derivable.3. If both � ` � : �0 and �; �0 j= � are derivable, then � j= �[�] is also derivable.Proof All these are straightforward.Note that the rule (sat-exists) is not syntax-directed. This could be a serious problem whichhinders the e�ciency of a constraint solver. In Subsection 4.2.6, we will introduce a procedurewhich eliminates existential variables in the constraints generated during type-checking. In theprototype implementation, we simply reject a constraint if some existential quanti�ers in it cannotbe eliminated. The practical signi�cance of this decision is to make constraint solving as feasibleas possible for typical use. Another important reason is that this can signi�cantly help generatecomprehensible error messages as our experience indicates.Not much of our development depends on the precise form of the constraint domain, exceptthat the constructs above must be present in order to reduce dependent type-checking to constraintsatisfaction. For example, implication P � � is necessary to express constraints arising frompattern matching. Though subset sorts fa : 
 j Pg are not strictly required in the formulation ofthe type system, they are crucial to making the system expressive enough for practical use.3.2 A Constraint Domain over Algebraic TermsWe present a constraint domain over algebraic terms. In the signature �alg of this domain, adeclaration is of form f : b1 � � � � � bn ! b. If it is preferred to have an unsorted constraint domain,then one can assume that there is only one base sort term, which stands for the sort of all terms.Let us present an interesting example, in which the type index objects are drawn from �alg.We use the following datatype to represent pure untyped lambda-terms in de Bruijn's notation.
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3.2. A CONSTRAINT DOMAIN OVER ALGEBRAIC TERMS 39a 2 dom(�0)� j=[�0] a := a � j=[�0] i1 := j1 � � � � j=[�0] in := jn� j=[�0] f(i1; : : : ; in) := f(j1; : : : ; jn)� j=[�0] P1� j=[�0] P1 _ P2 � j=[�0] P2� j=[�0] P1 _ P2 P1 j=[�0] P2� j=[�0] P1 � P2P1; P2; �p j=[�0] PP1 ^ P2; �p j=[�0] P i1 := j1; : : : ; in := jn; �p j=[�0] Pf(i1; : : : ; in) := f(j1; : : : ; jn); �p j=[�0] P�p[a 7! i] j=[�0] P [a 7! i]a := i; �p j=[�0] P �p[a 7! i] j=[�0] P [a 7! i]i := a; �p j=[�0] PP1; �p j=[�0] P P2; �p j=[�0] PP1 _ P2; �p j=[�0] P � j=[�0; a : b] P� j=[�0] 8a : b:PFigure 3.2: The rules for satis�ability veri�cationdatatype lambda_term = One | Shift of lambda_term |Abs of lambda_term |App of lambda_term * lambda_termSuppose that there is a base sort level, and the following function symbols are declared in �alg.zero : level and next : level ! levelThis enables us to re�ne the datatype lambda_term into the following dependent type.typeref lambda_term of levelwith One <| {l:level} lambda_term(next(l))| Shift <| {l:level} lambda_term(l) -> lambda_term(next(l))| Abs <| {l:level} lambda_term(next(l)) -> lambda_term(l)| App <| {l:level} lambda_term(l) * lambda_term(l) -> lambda_term(l)Roughly speaking, if the de Bruijn's notation of a �-term is of type lambda_term(l), wherel = next(� � � (zero) � � �) contains n occurrences of next, then there are at most n free variables inthe �-term. Therefore, the type of all closed �-terms is lambda_term(zero).This is a very simple constraint domain. Given � and P , the rules in Figure 3.2 can be usedverify if (�)P is satis�able. Notice that �0 and �p are index contexts of forms a1 : b1; : : : ; an : bnand P1; : : : ; Pn, respectively. We say that (�)P is satis�able if � j=[�] (�)P is derivable. It is clearthat �alg should not to be �xed so that the programmer can then be allowed to declare the sorts offunction symbols. The simple reason for this is that the rules for satis�ability veri�cation in this
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40 CHAPTER 3. CONSTRAINT DOMAINSdomain are not e�ected by such declarations. The following is a sample derivation.� j=[a : level; b : level] b := ba := b j=[a : level; b : level] a := bnext(a) := next(b) j=[a : level; b : level] a := b� j=[a : level; b : level] next(a) := next(b) � a := b� j=[a : level] 8(b : level):next(a) := next(b) � a := b� j=[�] 8(a : level)8(b : level):next(a) := next(b) � a := bLastly, we remark that if disequations are allowed in this constraint domain then the rules forsatis�ability veri�cation can be extended straightforwardly.3.3 A Constraint Domain over IntegersWe present an integer constraint domain in this section. The signature of the domain is givenin Figure 3.3. We also list some sample constraints in Figure 3.4, which are generated duringtype-checking the binary search program in Figure 1.3.Unfortunately, there exist no practical constraint solving algorithms for this constraint domainin its full generality. This poses a very serious problem since our objective is to design a depen-dent type system for general purpose practical programming. In Subsection 4.2.6, a procedureis introduced to eliminate existential quanti�ers in constraints generated during type-checking.We currently simply reject a constraint if some existential quanti�ers in it cannot be eliminated.Therefore, the constraints which are �nally passed to a constraint solver consist of only linearinequalities, for which there exist practical solvers.3.3.1 A Constraint Solver for Linear InequalitiesWhen all existential variables have been eliminated (Subsection 4.2.6) and the resulting constraintscollected, we check them for linearity. We currently reject non-linear constraints rather thanpostponing them as hard constraints (Michaylov 1992), which is planned for future work. If theconstraints are linear, we negate them and test for unsatis�ability. Our technique for solving linearconstraints is mainly based on Fourier-Motzkin variable elimination (Dantzig and Eaves 1973), butthere are many other methods available for this purpose such as the SUP-INF method (Shostak1977) and the well-known simplex method. We have chosen Fourier-Motzkin's method mainly forits simplicity.We now brie
y explain this method. We use x for integer variables, a for integers, and l forlinear expressions. Given a set of inequalities S, we would like to show that S is unsatis�able. We�x a variable x and transform all the linear inequalities into one of the forms l � ax or ax � lfor a � 0. For every pair l1 � a1x and a2x � l2, where a1; a2 > 0, we introduce a new inequalitya2l1 � a1l2 into S, and then remove from S all the inequalities involving x. Clearly, this is a soundbut incomplete procedure. If x were a real variable, then the elimination would also be complete.In order to handle modular arithmetic, we also perform another operation to rule out non-integer solutions: we transform an inequality of forma1x1 + � � �+ anxn � a
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3.3. A CONSTRAINT DOMAIN OVER INTEGERS 41
�int = abs : int! intsgn : int! intsucc : int! intpred : int! int� : int! int+ : int � int! int� : int � int! int� : int � int! intdiv : int � int! intmin : int � int! intmax : int � int! intmod : int � int! int< : int � int! o� : int � int! o= : int � int! o� : int � int! o> : int � int! o6= : int � int! oFigure 3.3: The signature of the integer domain

8h : int:8l : nat:8size : nat:(0 � h+ 1 � size ^ 0 � l � size ^ h � l) � (l + (h� l)=2) � size8h : int:8l : nat:8size : nat:(0 � h+ 1 � size ^ 0 � l � size ^ h � l) � 0 � l + (h� l)=2 � 1 + 18h : int:8l : nat:8size : nat:(0 � h+ 1 � size ^ 0 � l � size ^ h � l) � l + (h� l)=2 � 1 + 1 � size8h : int:8l : nat:8size : nat:(0 � h+ 1 � size ^ 0 � l � size ^ h � l) � 0 � l + (h� l)=2 + 18h : int:8l : nat:8size : nat:(0 � h+ 1 � size ^ 0 � l � size ^ h � l) � l + (h� l)=2 + 1 � sizeFigure 3.4: Sample constraints



www.manaraa.com

42 CHAPTER 3. CONSTRAINT DOMAINSinto a1x1 + � � � + anxn � a0;where a0 is the largest integer such that a0 � a and the greatest common divisor of a1; : : : ; andivides a0. This is used in type-checking an optimized byte copy function in Section A.5.The above elimination method can be extended to be both sound and complete while remainingpractical (see, for example, (Pugh and Wonnacott 1992; Pugh and Wonnacott 1994)). We hope touse such more sophisticated methods which still appear to be practical, although we have not yetfound the need to do so in the context of our current experiments.3.3.2 An ExampleWe show how the following constraint is solved with the above approach.8h : int:8l : nat:8size : nat:(0 � h+ 1 � size ^ 0 � l � size ^ h � l) � l + (h� l)=2 + 1 � sizeThe �rst step is to negate the constraint and transform it into the following form.l � 0 size � 0 0 � h+ 1 h+ 1 � size l � size h � l l + (h� l)=2 + 1 > sizeThen we replace (h� l)=2 with D and add h� l� 1 � 2D � h� l into the set of linear inequalities.We now test for the unsatis�ability of the following set of linear inequalities.l � 0 size � 0 0 � h+ 1 h+ 1 � size l � size h � lh� l � 1 � 2D 2D � h� l l +D � sizeWe now eliminate variable size, yielding the following set of inequalities.l � 0 l +D � 0 0 � h+ 1 h+ 1 � l +D l � l +D h � lh� l � 1 � 2D 2D � h� lWe then eliminate variable D and generate the following set of inequalities.l � 0 � 2l � h� l 0 � h+ 1 2h� 2l + 2 � h� l 0 � h� l h � l h� l � 1 � h� lIf we eliminate variable h at this stage, the inequality l � l� 1 is then produced, which leads to acontradiction. Therefore, the original constraint has been veri�ed.The Fourier variable elimination method can be expensive in practice. We refer the reader to(Pugh and Wonnacott 1994) for a detailed analysis on this issue. However, we feel that this methodis intuitive and therefore can facilitate informative type error message report if some constraintscan not be veri�ed.We have observed that an overwhelming majority of the constraints gathered in practice aretrivial ones and can be solved with a sound and highly e�cient (but incomplete) constraint solversuch as one based on the simplex method for reals. Therefore, a promising strategy is to use suchan e�cient constraint solver to �lter out trivial constraints and then use a sound and complete(but relatively slow) constraint solver to handle the rest of the constraints.
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3.4. SUMMARY 433.4 SummaryIn this chapter, we have presented a general constraint language in which constraint domains canbe constructed. It will soon be clear that the dependent type system that we develop parameterizesover a given constraint domain. The ability to �nd a practical constraint solver for a constraintdomain is crucial to making type-checking feasible in the dependent type system parameterizingover it.At this moment, there is no mechanism to allow the user to de�ne a constraint solver fora declared constraint domain. Some study on formulating such a mechanism can be found in(Fr�uhwirth 1992). Also there is a great deal of study on how to de�ne constraint solvers and makethem more e�cient in the constraint logic programming community, and (Ja�ar and Maher 1994)is an excellent source to draw inspiration from.
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Chapter 4Universal Dependent TypesIn this chapter we enrich the type system of ML0 with universal dependent types, yielding alanguage ML�0 (C), where C is some �xed constraint domain. We then present the typing rulesand operational semantics for ML�0 (C) and prove some crucial properties, which include the typepreservation theorem and the relation between the operational semantics of ML�0 (C) and that ofML0. Also we prove that ML�0 (C) is a conservative extension of ML0.In order to make ML�0 (C) a practical programming language, we design an external languageDML0(C) for ML�0 (C). We address the issue of unobtrusiveness of programming in DML0(C)through an elaboration mapping which maps a program in DML0(C) into one in ML�0 (C). We thenprove the correctness of the elaboration. This elaboration process, which reduces type-checking aprogram into constraint satisfaction, accounts for a major contribution of the thesis. Finally, weuse a concrete example to illustrate the elaboration in full details since it is a considerably involvedprocess.This extension primarily serves as the core of the language that we will eventually develop, andit also demonstrates cleanly the language design approach we take for making dependent typesavailable in practical programming.4.1 Universal Dependent TypesWe now present ML�0 (C), which is an extension of ML0 with universal dependent types. Givena constraint domain C, the syntax of ML�0 (C) is given in Figure 4.1. We use � for base typefamilies, where we use �(hi) for an unindexed type. Type and context formation rules are listed inFigure 4.2. A judgement of form � ` � : � means that � is a well-formed type under index context�, and a judgement of form � ` �[ctx] means that � is a well-formed context under �. Notice thata major type is a type which does not begin with a quanti�er.The domains of � and � are de�ned as usual. Note that every substitution � can be thoughtof as the union of two substitutions �� and ��, where dom(��) contains only index variables anddom(��) contains only (ordinary) variables.We do not specify here how new type families or constructor types are actually declared,but assume only that they can be processed into the form given above. Our implementationprovides indexed re�nement of datatype declarations as shown in Section 1.1. The syntax for suchdeclarations will be mentioned in Chapter 8. 45
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46 CHAPTER 4. UNIVERSAL DEPENDENT TYPES
families � ::= (family of re�ned datatypes)signature S ::= �S j S; � : 
 ! �j S; c : �a1 : 
1 : : :�an : 
n:�(i)j S; c : �a1 : 
1 : : :�an : 
n:� ! �(i)major types � ::= �(i) j 1 j (�1 � �2) j (�1 ! �2)types � ::= � j (�a : 
:�)patterns p ::= x j c[a1] : : : [an] j c[a1] : : : [an](p) j hi j hp1; p2imatches ms ::= (p) e) j (p) e j ms)expressions e ::= x j hi j he1; e2i j c[i1] : : : [in] j c[i1] : : : [in](e)j (case e of ms) j (lam x : �:e) j e1(e2)j let x = e1 in e2 end j (�x f : �:u)j (�a : 
:e) j e[i]value forms u ::= c[i1] : : : [in] j c[i1] : : : [in](u) j hi j hu1; u2ij (lam x : �:e) j (�a : 
:u)values v ::= x j c[i1] : : : [in] j c[i1] : : : [in](v) j hi j hv1; v2ij (lam x : �:e) j (�a : 
:v)contexts � ::= � j �; x : �index contexts � ::= � j �; a : 
 j �; Psubstitutions � ::= [] j �[x 7! e] j �[a 7! i]Figure 4.1: The syntax for ML�0 (C)

S(�) = 
 ! � � ` i : 
� ` �(i) : � (type-datatype) � ` �1 : � � ` �2 : �� ` �1 ) �2 : � (type-match)` �[ictx]� ` 1 : � (type-unit) � ` �1 : � � ` �2 : �� ` h�1; �2i : � (type-prod)� ` �1 : � � ` �2 : �� ` �1 ! �2 : � (type-fun) �; a : 
 ` �� ` �a : 
:� (type-pi)� ` �[ctx] (ctx-empty) � ` �[ctx] � ` � : �� ` �; x : � [ctx] (ctx-var)Figure 4.2: The type formation rules for ML0
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4.1. UNIVERSAL DEPENDENT TYPES 47x # � � (�;x : �) (pat-var)hi # 1� (�; �) (pat-unit)p1 # �1 � (�1; �1) p2 # �2 � (�2; �2)hp1; p2i # �1 � �2 � (�1; �2; �1;�2) (pat-prod)S(c) = �a1 : 
1 : : :�an : 
n:�(i)c[a1] : : : [an] # �(j) � (a1 : 
1; : : : ; an : 
n; i := j; �) (pat-cons-wo)S(c) = �a1 : 
1 : : :�an : 
n:(� ! �(i)) p # � � (�; �)c[a1] : : : [an](p) # �(j) � (a1 : 
1; : : : ; an : 
n; i := j; �; �) (pat-cons-w)Figure 4.3: Typing rules for patterns4.1.1 Static SemanticsWe start with the typing rules for patterns, which are listed in Figure 4.3. The judgment p #� � (�; �) expresses that the index and ordinary variables in pattern p have the types declared in� and �, respectively, if we know that p must have type � .We write � j= � � � 0 for the congruent extension of � j= i := j from index objects to types,which is determined by the following rules.� j= i := j� j= �(i) � �(j) � j= �1 � � 01 � j= �2 � � 02� j= �1 � �2 � � 01 � � 02� j= � 01 � �1 � j= �2 � � 02� j= �1 ! �2 � � 01 ! � 02 �; a : 
 j= � � � 0� j= �a : 
:� � �a : 
:� 0Proposition 4.1.1 If both � ` � : �0 and �; �0 j= �1 � �2 are derivable, then � j= �1[�] � �2[�] isalso derivable.Proof This simply follows from a structural induction on the derivation of � j= �1 � �2, with theapplication of Proposition 3.1.2 (3).We now present the typing rules for ML�0 (C) in Figure 4.4. We require that there be no freeoccurrences of a in �(x) for every x 2 dom(�) when the rule (ty-ilam) is applied. Also note thatone premise � ` �2 : � of the rule (ty-match) enforces that all index variables in � are declared in�. The rule (ty-cons-wo) applies only if c is a constructor without an argument. If c is with oneargument, the rule (ty-cons-w) applies.Proposition 4.1.2 (Inversion) If �; � ` e : � is derivable, then the last inference rule of anyderivation of �; � ` e : � is either (ty-eq) or uniquely determined by the structure of e.Proof By an inspection of all the typing rules in Figure 4.4.This proposition will be frequently used to do structural induction on typing derivations since itallows us to determinate the last applied rule in such derivations.
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48 CHAPTER 4. UNIVERSAL DEPENDENT TYPES
�; � ` e : �1 � j= �1 � �2�; � ` e : �2 (ty-eq)� ` �[ctx] �(x) = ��; � ` x : � (ty-var)S(c) = �a1 : 
1 : : :�an : 
n:�(i) � ` i1 : 
1 � � � � ` in : 
n � ` �[ctx]�; � ` c[i1] : : : [in] : �(i[a1; : : : ; an 7! i1; : : : ; in]) (ty-cons-wo)S(c) = �a1 : 
1 : : : an : 
n:� ! �(i)� ` i1 : 
1 � � � � ` in : 
n �; � ` e : � [a1; : : : ; an 7! i1; : : : ; in]�; � ` c[i1] : : : [in](e) : �(i[a1; : : : ; an 7! i1; : : : ; in]) (ty-cons-w)� ` �[ctx]�; � ` hi : 1 (ty-unit)�; � ` e1 : �1 �; � ` e2 : �2�; � ` he1; e2i : �1 � �2 (ty-prod)p # �1 � (�0; �0) �; �0; �;�0 ` e : �2 � ` �2 : ��; � ` p) e : �1 ) �2 (ty-match)�; � ` (p) e) : �1 ) �2 �; � ` ms : �1 ) �2�; � ` (p) e j ms) : �1 ) �2 (ty-matches)�; � ` e : �1 �; � ` ms : �1 ) �2�; � ` (case e of ms) : �2 (ty-case)�; a : 
; � ` e : ��; � ` (�a : 
:e) : (�a : 
:�) (ty-ilam)�; � ` e : �a : 
:� � ` i : 
�; � ` e[i] : � [a 7! i] (ty-iapp)�; �; x : �1 ` e : �2�; � ` (lam x : �1:e) : �1 ! �2 (ty-lam)�; � ` e1 : �1 ! �2 �; � ` e2 : �1�; � ` e1(e2) : �2 (ty-app)�; � ` e1 : �1 �; �; x : �1 ` e2 : �2�; � ` let x = e1 in e2 end : �2 (ty-let)�; �; f : � ` u : ��; � ` (�x f : �:u) : � (ty-�x)Figure 4.4: Typing Rules for ML�0 (C)
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4.1. UNIVERSAL DEPENDENT TYPES 49match(x; v) =) [x 7! v] (match-var)match(hi; hi) =) [] (match-unit)match(p1; v1) =) �1 match(p2; v2) =) �2match(hp1; p2i; v) =) �1 [ �2 (match-prod)match(c[a1] : : : [an]; c[i1] : : : [in]) =) [a1 7! i1; : : : ; an 7! in] [ [] (match-cons-wo)match(p; v) =) �match(c[a1] : : : [an](p); c[i1] : : : [in](v)) =) [a1 7! i1; : : : ; an 7! in] [ � (match-cons-w)Figure 4.5: The pattern matching rules for ML�0 (C)Next we turn to the operational semantics. Matching a pattern p against a value v yields asubstitution �, whose domain includes both index and ordinary variables, written as the judgmentmatch(p; v) =) �.Given �; �;�0; �0 and �, a judgement of form �; � ` � : (�0; �0) can be derived through theapplication of the following rules.�; � ` [] : (�; �) (subst-empty)�; � ` � : (�0; �0) �; � ` e : ��; � ` �[x 7! e] : (�0; �0; x : �) (subst-var)�; � ` � : (�0; �0) � ` i : 
�; � ` �[a 7! i] : (�0; a : 
; �0) (subst-ivar)�; � ` � : (�0; �0) �; �0 ` P : o � j= P [�]�; � ` � : (�0; P ; �0) (subst-iprop)The meaning of a judgement of form �; � ` � : (�0; �0) is given in the proposition below.Proposition 4.1.3 If �; � ` � : (�0; �0) is derivable, thendom(�0) = dom(��) and dom(�0) = dom(��);and � j= P [�] is derivable for every index proposition P declared in �0.Proof This directly follows from a structural induction on the derivation �; � ` � : (�0; �0).Lemma 4.1.4 (Substitution) If �; �0; �;�0 ` e : � and �; � ` � : (�0; �0) are derivable, then�; � ` e[�] : � [�] is derivable.Proof This follows from a structural induction on the derivation D of �; �0; �;�0 ` e : � , parallelto the proof of Lemma 2.2.4. We present some cases.
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50 CHAPTER 4. UNIVERSAL DEPENDENT TYPES�; �0; �;�0 ` e : �1 �; �0 j= �1 � �2D = �; �0; �;�0 ` e : �2 By induction hypothesis, �; � ` e[�] : �1[�] is deriv-able. Clearly, � ` �� : �0 is also derivable, and this implies that � j= �1[��] � �2[��] isderivable. We then have the following.�; � ` e[�] : �1[��] � j= �1[��] � �2[��]�; � ` e[�] : �2[��] (ty-eq)By the de�nition of ��, �i[��] = �i[�] for i = 1; 2. This concludes the case.�; �0; �;�0 ` e1 : �1 �; �0; �;�0 ` e2 : �2D = �; �0; �;�0 ` he1; e2i : �1 � �2 By induction hypothesis, �; � ` ei[�] : �i[�] arederivable for i = 1; 2. This leads to the following derivation.�; � ` e1[�] : �1[�] �; � ` e2[�] : �2[�]�; � ` he1[�]; e2[�]i : �1[�] � �2[�] (ty-prod)Since he1; e2i[�] = he1[�]; e2[�]i and (�1 � �2)[�] = �1[�] � �2[�], we are done.All other cases can be handled similarly.Lemma 4.1.5 Assume that there is no a 2 dom(�) which occurs in pattern p. If �; � ` v : � ,p # � � (�0; �0) and match(p; v) =) � are derivable, then �; � ` � : (�0; �0) is derivable.Proof This follows from a structural induction on the derivation D of p # � � (�0; �0), parallelto the proof of Lemma 2.2.5. Since there is no a 2 dom(�) which occurs in pattern p, dom(�) \dom(��) = ;. We present one interesting case where v = c[a1] : : : [an](v1).match(p1; v1) =) �1D =match(c[a1] : : : [an](p1); c[i1] : : : [in](v1)) =) [a1 7! i1; : : : ; an 7! in] [ �1 Then the deriva-tion of p # � � (�0; �0) must be of the following form,S(c) = �a1 : 
1 : : :�an : 
n:(�1 ! �(i)) p1 # �1 � (�01; �0)c[a1] : : : [an](p1) # �(j) � (a1 : 
1; : : : ; an : 
n; i := j; �01; �0) (pat-cons-w)where � = �(j) and �0 = a1 : 
1; : : : ; an : 
n; i := j; �01. By induction hypothesis, �; � ` �1 :(�01; �0) is derivable. Let us �rst suppose that the derivation of �; � ` v : �1 is of the followingform, S(c) = �a1 : 
1 : : : an : 
n:�1 ! �(i)� ` i1 : 
1 � � � � ` in : 
n �; � ` v1 : �1[a1; : : : ; an 7! i1; : : : ; in]�; � ` c[i1] : : : [in](v1) : �(i[a1; : : : ; an 7! i1; : : : ; in]) (ty-cons-w)where i[a1; : : : ; an 7! i1; : : : ; in] is j. Clearly, we have � j= i[�] := j[�] sincei[�] = i[a1; : : : ; an 7! i1; : : : ; in] = j = j[�]:
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4.1. UNIVERSAL DEPENDENT TYPES 51It then immediately follows that �; � ` � : (�0; �0) is derivable. Note that �; � ` v : � canalso be derived as follows, �; � ` v : �1 � j= �1 � ��; � ` v : � (ty-eq)where �1 = �(j1) for some j1 and �; � ` v : �1 is derived with an application of (ty-cons-w).Then j1 is i[a1; : : : ; an 7! i1; : : : ; in]. We can infer � j= j1 := j from � j= �1 � � . This implies� j= i[�] = j1 := j = j[�], leading to a derivation of �; � ` � : (�0; �0).All other cases can be treated similarly.Lemma 4.1.5 is crucial to proving the type preservation theorem for ML�0 (C), which is formulatedas Theorem 4.1.6.4.1.2 Dynamic SemanticsThe natural semantics of ML�0 (C) is given through the rules in Figure 4.6. Note that e ,!d vmeans that e reduces to a value v in this semantics.Notice that type indices are never evaluated. This highlights the language design decision wehave made: there exist no direct interactions between indices and code execution. The reasoningon type indices requires constraint satisfaction done statically during type-checking.Theorem 4.1.6 (Type preservation in ML�0 (C)) Given e; v in ML�0 (C) such that e ,!d v is deriv-able. If �; � ` e : � is derivable, then �; � ` v : � is derivable.Proof The theorem follows from a structural induction on the derivation D of e ,!d v and thederivation of �; � ` e : � , lexicographically ordered. If the last rule in the derivation of �; � ` e : �is �; � ` e : � 0 � ` � 0 � ��; � ` e : � (ty-eq);then by induction hypothesis �; � ` v : � 0 is derivable, and therefore we have the following.�; � ` v : � 0 � j= � 0 � ��; � ` v : � (ty-eq)This allows us to assume that the last rule in the derivation of �; � ` e : � is not (ty-eq) in therest of the proof. We present several cases.e0 ,!d v0 match(v0; pk) =) � for some 1 � k � n ek[�] ,!d vD = (case e0 of p1 ) e1 j � � � j pn ) en) ,!d v Then by Proposition 4.1.2,the last rule in the derivation of �; � ` e : � is of the following form.�; � ` e0 : �0 �; � ` (p1 ) e1 j � � � j pn ) en) : �0 ) ��; � ` (case e0 of (p1 ) e1 j � � � j pn ) en)) : � (ty-case)
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52 CHAPTER 4. UNIVERSAL DEPENDENT TYPES

x ,!d x (ev-var)c[i1] : : : [in] ,!d c[i1] : : : [in] (ev-cons-wo)e ,!d vc[i1] : : : [in](e) ,!d c[i1] : : : [in](v) (ev-cons-w)hi ,!d hi (ev-unit)e1 ,!d v1 e2 ,!d v2he1; e2i ,!d hv1; v2i (ev-prod)e0 ,!d v0 match(v0; pk) =) � for some 1 � k � n ek[�] ,!d v(case e0 of (p1 ) e1 j � � � j pn ) en)) ,!d v (ev-case)e ,!d v(�a : 
:e) ,!d (�a : 
:v) (ev-ilam)e ,!d (�a : 
:v)e[i] ,!d v[a 7! i] (ev-iapp)(lam x : �:e) ,!d (lam x : �:e) (ev-lam)e1 ,!d (lam x : �:e) e2 ,!d v2 e[x 7! v2] ,!d ve1(e2) ,!d v (ev-app)e1 ,!d v1 e2[x 7! v1] ,!d v2(let x = e1 in e2 end) ,!d v2 (ev-let)(�x f : �:u) ,!d u[f 7! (�x f : �:u)] (ev-�x)Figure 4.6: Natural Semantics for ML�0 (C)
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4.1. UNIVERSAL DEPENDENT TYPES 53Clearly, we also have the following.pk # �0 � (�0; �0) �; �0; �;�0 ` ek : � � ` � : ��; � ` (pk ) ek) : (�0 ) �) (ty-match)By induction hypothesis, �; � ` v0 : �0 is derivable. Therefore, �; � ` � : (�0; �0) is derivableby Lemma 4.1.5. This implies that �; � ` ek[�] : � is derivable by Lemma 4.1.4 since � = � [�].By induction hypothesis, �; � ` v : � is derivable.e1 ,!d v1D =(�a : 
:e1) ,!d (�a : 
:v1) Then by Proposition 4.1.2, �; a : 
; � ` e1 : �1 is derivable,where �a : 
:�1 = � . By induction hypothesis, �; a : 
; � ` v1 : �1 is derivable, and this yieldsthe following. �; a : 
; � ` v1 : �1�; � ` (�a : 
:v1) : (�a : 
:�1) (ty-ilam)e1 ,!d (�a : 
:v1)D =e1[i] ,!d v1[a 7! i] Then by Proposition 4.1.2, we have a derivation of the following form,�; � ` e1 : (�a : 
:�1) � ` i : 
�; � ` e1[i] : � (ty-iapp)where � = �1[a 7! i]. By induction hypothesis, �; � ` (�a : 
:v1) : (�a : 
:�1) is derivable, andthis yields that �; a : 
; � ` v1 : �1 is derivable. By Lemma 4.1.4, �; � ` v1[a 7! i] : �1[a 7! i]is derivable.All other cases can be handled similarly.We have no intention to construct an interpreter or a compiler following the natural semanticsof ML�0 (C). Instead, we intend to use existing compilers of ML to compile programs written inML�0 (C). The following index erasure function k�k is mainly introduced for this purpose. Note thatthis is di�erent from the type erasure function j � j. Roughly speaking, the index erasure functionerases everything related to type index objects, mapping ML�0 (C) programs into ML0 ones.De�nition 4.1.7 The index erasure function k � k is de�ned in Figure 4.7. which maps an expres-sion in ML�0 (C) into one in ML0.In order to justify that the index erasure function does what it is supposed to do, we have to showthat the index erasure of an ML�0 (C) program behaves properly in the following sense.1. Given an ML�0 (C) program e which evaluates to v according to the natural semantics ofML�0 (C), we must verify that kek evaluates to kvk according to the natural semantics ofML0.2. Given an ML�0 (C) program e whose erasure kek evaluates to v0 according to the natural se-mantics of ML0, we must verify that e evaluates to some v according to the natural semanticsof ML�0 (C) such that kvk = v0.
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54 CHAPTER 4. UNIVERSAL DEPENDENT TYPESk1k = 1k�(i)k = �k�a : 
:�k = k�kk�1 � �2k = k�1k � k�2kk�1 ! �2k = k�1k ! k�2kkxk = xkc[i1] : : : [in]k = ckc[i1] : : : [in](e)k = c(kek)khik = hikhe1; e2ik = hke1k; ke2kikp) e j msk = kpk ) kek j kmskk(case e of ms)k = (case kek of kmsk)k(lam x : �:e)k = (lam x : k�k:kek)ke1(e2)k = ke1k(ke2k)k(�a : 
:e)k = kekke[i]k = kekklet x = e1 in e2 endk = let x = ke1k in ke2k endk�x f : �:uk = �x f : k�k:kukk � k = �k�; x : �k = k�k; x : k�kk �S k = �SkS; � : 
 ! �k = kSk; � : �kS; c : �k = kSk; c : k�kk[]k = []k�[a 7! i]k = k�kk�[x 7! e]k = k�k[x 7! kek]Figure 4.7: The de�nition of erasure function k � k(1) and (2) will be proven as Theorem 4.1.10 and Theorem 4.1.12, respectively.Proposition 4.1.8 We have the following.1. k� [�]k = k�k and ke[�]k = kek[k�k].2. kuk is a value form in ML0 if u is a value form in ML�0 (C).3. kvk is a value in ML0 if v is a value in ML�0 (C).4. If p # � � (�; �) is derivable, then kpk # k�k� k�k is derivable.5. If match(p; v) =) � is derivable in ML�0 (C), then match(kpk; kvk) =) k�k is derivable inML0.
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4.1. UNIVERSAL DEPENDENT TYPES 556. Given v; p in ML�0 (C) such that �; � ` v : � and p # � =) (�; �) are derivable. Ifmatch(kpk; kvk) =) �0 is derivable, then match(p; v) =) � is derivable for some � andk�k = �0.7. If � j= �1 � �2 is derivable, then k�1k = k�2k.Proof We omit the proofs of (1), (2) and (3), which are straightforward. (4) is proven by astructural induction on the derivation D of p # � � (�; �), and we present one case below. Let Dbe a derivation of the following form.S(c) = �a1 : 
1 : : :�an : 
n:(� ! �(i)) p # � � (�; �)c[a1] : : : [an](p) # �(j) � (a1 : 
1; : : : ; an : 
n; i := j; �; �) (pat-cons-w)By induction hypothesis, we have the following derivation.kSk(c) = k�k ! � kpk # k�k� k�kc(kpk) # � � k�k (pat-cons-w)Notice that kc[a1] : : : [an](p)k = c(kpk), k�(j)k = � andk(a1 : 
1; : : : ; an : 
n; i := j; �; �)k = k�k:Hence we are done.(5) follows from a straightforward structural induction on the derivation D of match(p; v) =)�. We present one case below. match(p; v) =) �D =match(c[a1] : : : [an](p); c[i1] : : : [in](v)) =) [a1 7! i1; : : : ; an 7! in] [ � By induction hypoth-esis, match(kpk; kvk) =) k�k. This leads to the following.match(kpk; kvk) =) k�kmatch(c(kpk); c(kvk)) =) k�k (match-cons-w)Since kc[a1] : : : [an](p)k = c(kpk), kc[i1] : : : [in](v)k = c(kvk) andk[a1 7! i1; : : : ; an 7! in] [ �k = k�k;we are done.All other cases can be treated similarly.The proof of (6) proceeds by a structural induction on the derivation ofmatch(kpk; kvk) =) �0,parallel to that of (5). (7) is then proven by a structural induction on the derivation of � j= �1 � �2.Theorem 4.1.9 If �; � ` e : � is derivable in ML�0 (C), then k�k ` kek : k�k is derivable in ML0.
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56 CHAPTER 4. UNIVERSAL DEPENDENT TYPESProof This simply follows from a structural induction on the derivation of �; � ` e : � .We say that an expression e in ML�0 (C) (ML0) is typable if �; � ` e : � (� ` e : �) is derivablefor some �;�; � in ML�0 (C) (for some �; � in ML0). Also we say that an untyped expression e in�patval is typable in ML�0 (C) (ML0) if e is the type erasure of some typable expression in ML�0 (C)(ML0). In this sense, it is clear from Theorem 4.1.9 that there are no more expressions in �patvalwhich are typable in ML�0 (C) than are typable in ML0. On the other hand, there has been a greatdeal of research on designing type systems so that strictly more expressions in �patval are typablein these type systems than are typable in ML0. For instance, the type system extending ML0with let-polymorphism allows more expressions in �patval to be typable. In this respect, our workis signi�cantly di�erent. Roughly speaking, our objective is to assign expressions more accuratetypes rather than make more expressions typable.Theorem 4.1.10 If e ,!d v derivable in ML�0 (C), then kek ,!0 kvk is derivable.Proof This simply follows from a structural induction on the derivation D of e ,!d v. We presenta few cases as follows.e0 ,!d v0 match(v0; pk) =) � for some 1 � k � n ek[�] ,!d vD = (case e0 of p1 ) e1 j � � � j pn ) en) ,!d v Then by induction hypoth-esis, ke0k ,!0 kv0k is derivable. By Proposition 4.1.8 (5), match(kpkk; kv0k) =) k�k isderivable. By induction hypothesis, kekk[k�k] ,!0 kvk is derivable since kek[�]k = kekk[k�k]by proposition 4.1.8 (1). This leads to the following.ke0k ,!0 kv0k match(kv0k; kpkk) =) � for some 1 � k � n kekk[k�k] ,!0 kvk(case ke0k of (kp1k ) ke1k j � � � j kpnk ) kenk)) ,!0 kvk (ev-case)Note that kcase e0 of p1 ) e1 j � � � j pn ) enk iscase ke0k of (kp1k ) ke1k j � � � j kpnk ) kenk);and we are done.e1 ,!d v1D =(�a : 
:e1) ,!d (�a : 
:v1) Then by induction hypothesis, ke1k ,!0 kv1k is derivable.Note that k(�a : 
:e1)k = ke1k and k(�a : 
:v1)k = kv1k. Hence we are done.e1 ,!d (�a : 
:v1)D =e1[i] ,!d v1[a 7! i] Then by induction hypothesis, ke1k ,!0 k(�a : 
:v1)k = kv1k is deriv-able. Note that ke1[i]k = ke1k. Also kv1[a 7! i]k = kv1k by Proposition 4.1.8 (1). Hence, weare done.All the rest of the cases can be handled similarly.Theorem 4.1.10 is a recon�rmation that type indices do not interact with program evaluation.This is a soundness argument in the sense that we have proven that index erasure is sound withrespect to evaluation. We now prove that index erasure is also complete with respect to evaluation,formulated as Theorem 4.1.12. The following lemma will be needed in its proof.
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4.1. UNIVERSAL DEPENDENT TYPES 57Lemma 4.1.11 Given a value v1 in ML�0 (C) such that �; � ` v1 : �a : 
:� is derivable, v1 mustbe of form �a : 
:v2 for some value v2.Proof This follows from a structural induction on the derivation D of �; � ` v1 : (�a : 
:�).�; � ` v1 : �1 � j= �1 � �a : 
:�D = �; � ` v1 : �a : 
:� Then �1 must of form �a : 
:� 01. By induction hypothesis,v1 has the claimed form.�; a : 
; � ` v : �D =�; � ` (�a : 
:v) : (�a : 
:�) Then v1 is �a : 
:v, and we are done.Note that the last applied rule in D cannot be (ty-var). Since v1 is a value, no other rules can bethe last applied rule in D. This concludes the proof.Theorem 4.1.12 Given �; � ` e : � derivable in ML�0 (C). If e0 = kek ,!0 v0 is derivable for somev0 in ML0, then there exists v in ML�0 (C) such that e ,!d v is derivable and kvk = v0.Proof The theorem follows from a structural induction on the derivation of e0 ,!0 v0 and thederivation D of �; � ` e : � , lexicographically ordered. If the last applied rule in the derivation of�; � ` e : � is �; � ` e : � 0 � ` � 0 � ��; � ` e : � (ty-eq);then by induction hypothesis e ,!d v is derivable for some v and kvk = v0. This allows us toassume that the last applied rule in the derivation of �; � ` e : � is not (ty-eq) in the rest of theproof. We present several cases.�; � ` e0 : �0 �; � ` (p1 ) e1 j � � � j pn ) en) : �0 ) �D = �; � ` (case e0 of (p1 ) e1 j � � � j pn ) en)) : � Then the derivation of e0 ,!0 v0must be of the following form.e00 ,!d v00 match(v00 ; p0k) =) �0 for some 1 � k � n e0k[�0] ,!d v0(case e00 of p01 ) e01 j � � � j p0n ) e0n) ,!d v0 (ev-case);where ke0k = e00, kpkk = p0k and kekk = e0k for all 1 � k � n. Clearly, we also havepk # �0 � (�0; �0) �; �0; �;�0 ` ek : � � ` � : ��; � ` pk ) ek : �0 ) � (ty-match):By induction hypothesis, e0 ,!d v0 is derivable for some v0 and kv0k = v00 . Hence, �; � ` v0 : �0is derivable by Theorem 4.1.6. By Proposition 4.1.8 (6), match(pk; v0) =) � is derivable forsome � and k�k = �0. Note e0k[�0] = kek[�]k by Proposition 4.1.8 (1) and �; � ` � : (�0; �0) isderivable by Lemma 4.1.5. This yields that �; � ` ek[�] : � is derivable by Lemma 4.1.4. Byinduction hypothesis, ek[�] ,!0 v is derivable for some v and kvk = v0.
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58 CHAPTER 4. UNIVERSAL DEPENDENT TYPES�; a : 
; � ` e1 : �D =�; � ` (�a : 
:e1) : (�a : 
:�1) Hence we have k�a : 
:e1k = ke1k ,!0 v0 for some v0. Byinduction hypothesis, e1 ,!d v1 for some v1 such that kv1k = v0. Hence we have the following.e1 ,!d v1�a : 
:e1 ,!d �a : 
:v1 (ev-ilam)Note k�a : 
:v1k = kv1k = v0, and this concludes the case.�; � ` e1 : �a : 
:� � ` i : 
D = �; � ` e1[i] : � [a 7! i] Then we have ke1[i]k = ke1k ,!0 v0 for some v0. By inductionhypothesis, e1 ,!d v1 for some v1. By Theorem 4.1.6, �; � ` v1 : �a : 
:� is derivable. Noticethat v1 is of form �a : 
:v2 by Lemma 4.1.11. This leads to the following.e1 ,!d v1e1[i] ,!d v2[a 7! i] (ev-iapp)Since kv2[a 7! i]k = kv2k = kv1k = v0, we are done.All other cases can be treated similarly.Now we have completely justi�ed the following evaluation strategy for ML�0 (C): given a well-typedexpression e in ML�0 (C), we can erase all type indices in e to obtain a well-typed expression kek inML0 and then evaluate it in ML0. By Theorem 4.1.10 and Theorem 4.1.12, this yields the expectedresult.We are now at the stage to report an interesting phenomenon in ML�0 (C).Example 4.1.13 There is no closed expression e in ML�0 (C) of type�m : nat:�n : nat:intlist(m+ n)! intlist(m)such that kek(cons(h0; nili)) evaluates to a value in ML0.Suppose kek(cons(h0; nili)) evaluates to v. Then by Theorem 4.1.12, there are some v1 of typeintlist(1) and v2 of type intlist(0) such thate[1][0](cons[1](h0; nili)) ,!d v1 and e[0][1](cons[1](h0; nili)) ,!d v2and kv1k = v = kv2k. This is a contradiction since v cannot be a list of length both zero and one.However, this does not mean that we could not de�ne a function in ML�0 (C) to be of the type�m : nat:�n : nat:intlist(m+ n)! intlist(m). As a matter of fact, the following function isof this type. �m : nat:�n : nat:lam x : intlist(m+ n):case x of nil) nilIf we call the above expression e, then the reader can readily verify that e[1][0](cons[1](h0; nili))does not evaluates to any value.It turns out that this kind of types can also signi�cantly complicate the constraints generatedduring an elaboration process which we will develop in the next section. The main reason lies inthat the existential variable elimination approach introduced in Subsection 4.2.6 does not cope wellwith the constraints produced when such types are checked.Since such types seem to have little practical use, we intend to �nd an syntactic approach todisallowing them. This will be a future research topic.
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4.2. ELABORATION 59It is a straightforward observation on the typing rules for ML�0 (C) that the following theoremholds.Theorem 4.1.14 ML�0 (C) is a conservative extension of ML0, that is, given �; e; v; � in ML0,�; � ` e : � and e ,!d v are derivable in ML�0 (C) if and only if � ` e : � and e ,!0 v are derivablein ML0.Proof The \if" part immediately follows from an inspection of the typing and evaluation rules forML0, which are all allowed in ML�0 (C). We now show the \only if" part. Since e is ML0, neitherrule (ty-ilam) nor rule (ty-iapp) can be applied in the derivation of �; � ` e : � . Therefore, thisderivation can easily lead to a derivation of � ` e : � in ML0. Similarly, the derivation of e ,!d vcan readily yield a derivation of e ,!0 v.The novelty of our approach to enriching the type system of ML with dependent types isprecisely the introduction of a restricted form of dependent types, where type index objects andlanguage expressions are separated. This, however, does not prevent us from reasoning about thevalues of expressions in the type system because we can introduce singleton types to relate thevalue of an expression to that of an index. For example, we re�ne the type int into in�nitely manysingleton types int(i) for i = 0; 1;�1; 2;�2; : : :, each of which contains only the integer i. If wecan type-check that an expression e is of type int(i), then we know that the run-time value of emust equal i. This, for instance, allows us to determine at compile-time whether the value of anexpression of type int is within certain range. Please see Section 9.2 for more details on this issue.We emphasize that both ML0 and ML�0 (C) in Theorem 4.1.14 are explicitly typed internallanguages, and hence we cannot simply conclude that if the programmer does not index any typesin his programs then these programs are valid for ML�0 (C) if they are valid for ML0. The obviousreason is that the programmer almost always writes programs in an external language, whichmay not be fully explicitly typed. Therefore, these programs needs to be elaborated into thecorresponding explicitly typed ones in an internal language.In order to guarantee that valid programs written in an external language for ML0 can besuccessfully elaborated into explicitly typed programs in ML�0 (C), we will design a two phasetype-checking algorithm in Chapter 6, achieving full compatibility.4.2 ElaborationWe have so far presented an explicitly typed language ML�0 (C). This presentation has a seriousdrawback from a programmer's point of view: one would quickly get overwhelmed with types whenprogramming in such a setting. It then becomes apparent that it is necessary to provide an externallanguage DML0(C) together with a mapping from DML0(C) to the internal language ML�0 (C).This mapping is called elaboration. Note that we also use the phrase type-checking to meanelaboration, sometimes.4.2.1 The External Language DML0(C) for ML�0 (C)The syntax for DML0(C) is given as follows.
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60 CHAPTER 4. UNIVERSAL DEPENDENT TYPESpatterns p ::= x j c j c(p) j hi j hp1; p2imatches ms ::= (p) e) j (p) e j ms)expressions e ::= x j c(e) j hi j he1; e2ij (case e of ms) j (lam x:e) j (lam x : �:e) j e1(e2)j (let x = e1 in e2 end) j (�x f : �:u) j �a : 
:e j (e : �)(e : �) means that e is annotated with type � . Type annotations in a program will be crucial toelaboration. Also, the need for �a : 
:e is explained in Section 8.3, which is used in a very restrictedway.Note that the syntax of DML0(C) is basically the syntax of ML0, though types here could bedependent types. This partially attests to the unobtrusiveness of our enrichment. The type erasurefunction j � j on expressions in ML�0 (C) is de�ned in the obvious way. Again please note that j � jis di�erent from the index erasure function k � k, which maps an ML�0 (C) expression into an ML0one.4.2.2 Elaboration as Static SemanticsWe illustrate some intuition behind the elaboration rules while presenting them. Elaboration, whichincorporates type checking, is de�ned via two mutually recursive judgments: one to synthesize atype where this can be done in a most general way, and one to check a term against a type wheresynthesis is not possible. The synthesizing judgement has the form �; � ` e " � ) e� and meansthat e elaborates into e� with type � . The checking judgement has the form �; � ` e # � ) e� andmeans that e elaborates into e� against type � . In general, we use e; p;ms for external expressions,patterns and matches, and e�; p�;ms� for their internal counterparts.The purpose of �rst two rules is to eliminate universal quanti�ers. For instance, let us assumethat e1(e2) is in the code and a type of form �a : 
:� is synthesized for e1; then we must applythe rule (elab-pi-elim) to remove the quanti�er in the type; we continue doing so until a majortype is reached, which must be of form �1 ! �2 (if the code is type-correct). Note that the actualindex i is not locally determined, but becomes an existential variable for the constraint solver.The rule (elab-pi-intro-1) is simpler since we check against a given dependent functional type.Of course, we require that there be no free occurrences of a in �(x) for all x 2 dom(�) when(elab-pi-intro-1) is applied.�; � ` e " �a : 
:� ) e� � ` i : 
�; � ` e " � [a 7! i]) e�[i] (elab-pi-elim)�; a : 
; � ` e # � ) e��; � ` e # �a : 
:� ) (�a : 
:e�) (elab-pi-intro-1)The next rule is for lambda abstraction, which checks a lam-expression against a type. Therule for the �xed point operator is similar. We emphasize that we never synthesize types for eitherlam or �x-expressions (for which principal types do not exist in general).�; �; x : �1 ` e # �2 ) e��; � ` (lam x:e) # �1 ! �2 ) (lam x : �1:e�1) (elab-lam)
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4.2. ELABORATION 61x # � ) (x; �;x : �) (elab-pat-var)hi # 1) (hi; �; �) (elab-pat-unit)p1 # �1 ) (p�1;�1; �1) p2 # �2 ) (p�2;�2; �2)hp1; p2i # �1 � �2 ) (hp�1; p�2i;�1; �2; �1;�2) (elab-pat-prod)S(c) = �a1 : 
1 : : :�an : 
n:�(i)c # �(j) ) (c[a1] : : : [an]; a1 : 
1; : : : ; an : 
n; i := j; �; �) (elab-pat-cons-wo)S(c) = �a1 : 
1 : : :�an : 
n:� ! �(i) p # � ) (p�;�; �)c(p) # �(j) ) (c[a1] : : : [an](p�); a1 : 
1; : : : ; an : 
n; i := j; �; �) (elab-pat-cons-w)Figure 4.8: The elaboration rules for patternsThe next rule is for function application, where the interaction between the two kinds of judgmentstakes place. After synthesizing a major type �1 ! �2 for e1, we simply check e2 against �1|synthesisfor e2 is unnecessary.�; � ` e1 " �1 ! �2 ) e�1 �; � ` e2 # �1 ) e�2�; � ` e1(e2) " �2 ) e�1(e�2) (elab-app-up)We maintain the invariant that the shape of types of variables in the context is always determined,modulo possible index constraints which may need to be solved. This means that with the rulesabove we can already check all normal forms. A term which is not in normal form will most oftenbe a let-expression, but in any case will require a type annotation, as illustrated in the followingone of two rules for let-expressions.�; � ` e1 " �1 ) e�1 �; �; x : �1 ` e2 # �2 ) e�2�; � ` let x = e1 in e2 end # �2 ) let x = e�1 in e�2 end (elab-let-down)Even if we are checking against a type, we must synthesize the type of e1. If e1 is a functionor �xpoint, its type must be given, in practice mostly be writing let x : � = e1 in e2 end whichabbreviates let x = (e1 : �) in e2 end. The following rule allows us to take advantage of suchannotations. �; � ` e # � ) e��; � ` (e : �) " � ) e� (elab-anno-up)As a result, the only types appearing in realistic programs are due to declarations of functionsand a few cases of polymorphic instantiation. The latter will be explained later in Subsection 6.2.3.Moreover, in the presence of existential dependent types, which will be introduced in Chapter 5,a pure ML type without dependencies obtained in the �rst phase of type-checking is assumed ifno explicit type annotation is given. This makes our extension truly conservative in the sense thatpure ML programs will work exactly as before, not requiring any annotations.Elaboration rules for patterns are particularly simple, due to the constraint nature of the typesfor constructors. We elaborate a pattern p against a type � , yielding an internal pattern p� and
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62 CHAPTER 4. UNIVERSAL DEPENDENT TYPESindex context � and (ordinary) context �, respectively. This is written as p # � ) (p�;�; �) inFigure 4.8. This judgment is used in the rules for pattern matching. The generated index context�0 are assumed into the index context � while elaborating e as shown in the rule (elab-match)below. For constraint satisfaction, these are treated as hypotheses.p # �1 ) (p�;�0; �0) �; �0; �;�0 ` e # �2 ) e� � ` �2 : ��; � ` (p) e) # (�1 ) �2)) (p� ) e�) (elab-match)For instance, if the constructor cons is of type � = �a : nat:int � intlist(a) ! intlist(a + 1),then we have the following.S(cons) = � x # int) (x; �;x : int) xs # intlist(a)) (xs; �;xs : intlist(a))hx; xsi # int � intlist(a)) (hx; xsi; �;x : int; xs : intlist(a))cons(hx; xsi) # intlist(n+ 1)) (cons[a](hx; xsi); a : nat; a+ 1 := n+ 1;x : int; xs : intlist(a))Lemma 4.2.1 If p # � ) (p�;�; �) is derivable, then p = kp�k and p� # � � (�; �) is derivable.Proof The proof proceeds by a structural induction on the derivation of p # � ) (p�;�; �). Wepresent some cases as follows.p1 # �1 ) (p�1;�1; �1) p2 # �2 ) (p�2;�2; �2)D = hp1; p2i # �1 � �2 ) (hp�1; p�2i;�1; �2; �1;�2) By induction hypothesis, for i = 1; 2,pi = kp�i k and p�i # �i � (�i; �i) are derivable. Therefore, we have hp1; p2i = khp�1; p�2ik, andwe can derive hp�1; p�2i # �1 � �2 � (�1; �2; �1;�2) as follows.p�1 # �1 � (�1; �1) p�2 # �2 � (�2; �2)hp�1; p�2i # �1 � �2 � (�1; �2; �1;�2) (elab-pat-prod)This concludes the case.S(c) = �a1 : 
1 : : :�an : 
n:� ! �(i) p # � ) (p�;�; �)D =c(p) # �(j)) (c[a1] : : : [an](p�); a1 : 
1; : : : ; an : 
n; i := j; �; �) By induction hypothesis,p = kp�k and p� # � � (�; �) is derivable. Hence, c(p) = kc[a1] : : : [an](p�)k and the followingis derivable.S(c) = �a1 : 
1 : : :�an : 
n:(� ! �(i)) p� # � � (�; �)c[a1] : : : [an](p�) # �(j) � (a1 : 
1; : : : ; an : 
n; i := j; �; �) (elab-pat-cons-w)This concludes the case.All other cases are straightforward.We now present the complete list of elaboration rules for ML�0 (C) in Figure 4.9 and Figure 4.10.The correctness of these rules are justi�ed by Theorem 4.2.2.There is a certain amount of nondeterminism in the formulation of these elaboration rules.For instance, there is a contention between the rules (elab-pi-intro-1) and (elab-pi-intro-2)when both of them are applicable. In this case, we always choose the former over the latter. Also



www.manaraa.com

4.2. ELABORATION 63
�; � ` e " �a : 
:� ) e� � ` i : 
�; � ` e " � [a 7! i]) e�[i] (elab-pi-elim)�; a : 
; � ` e # � ) e��; � ` e # �a : 
:� ) (�a : 
:e�) (elab-pi-intro-1)�; a : 
; � ` e # � ) e��; � ` �a : 
:e # �a : 
:� ) (�a : 
:e�) (elab-pi-intro-2)�(x) = � � ` �[ctx]�; � ` x " � ) x (elab-var-up)�; � ` x " �1 ) e� � j= �1 � �2�; � ` x # �2 ) e� (elab-var-down)S(c) = �a1 : 
1 : : :�an : 
n:�(i) � ` i1 : 
1 � � � � ` in : 
n�; � ` c " �(i[a1; : : : ; an 7! i1; : : : in])) c[i1] : : : [in] (elab-cons-wo-up)�; � ` c " �1 ) e� � j= �1 � �2�; � ` c # �2 ) e� (elab-cons-wo-down)S(c) = �a1 : 
1 : : :�an : 
n:� ! �(i)�; � ` e # � [a1; : : : ; an 7! i1; : : : in]) e�� ` i1 : 
1 � � � � ` in : 
n�; � ` c(e) " �(i[a1; : : : ; an 7! i1; : : : in])) c[i1] : : : [in](e�) (elab-cons-w-up)�; � ` c(e) " �1 ) e� � j= �1 � �2�; � ` c(e) # �2 ) e� (elab-cons-w-down)�; � ` hi " 1) hi (elab-unit-up)�; � ` hi # 1) hi (elab-unit-down)�; � ` e1 " �1 ) e�1 �; � ` e2 " �2 ) e�2�; � ` he1; e2i " �1 � �2 ) he�1; e�2i (elab-prod-up)�; � ` e1 # �1 ) e�1 �; � ` e2 # �2 ) e�2�; � ` he1; e2i # �1 � �2 ) he�1; e�2i (elab-prod-down)Figure 4.9: The elaboration rules for ML�0 (C) (I)
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64 CHAPTER 4. UNIVERSAL DEPENDENT TYPES
p # �1 ) (p�;�0; �0) �; �0; �;�0 ` e # �2 ) e� � ` �2 : ��; � ` (p) e) # (�1 ) �2)) (p� ) e�) (elab-match)�; � ` (p) e) # (�1 ) �2)) (p� ) e�) �; � ` ms # (�1 ) �2)) ms��; � ` (p) e j ms) # (�1 ) �2)) (p� ) e� j ms�) (elab-matches)�; � ` e " �1 ) e� �; � ` ms # (�1 ) �2)) ms��; � ` (case e of ms) # �2 ) (case e� of ms�) (elab-case)�; �; x : �1 ` e # �2 ) e��; � ` (lam x:e) # �1 ! �2 ) (lam x : �1:e�) (elab-lam)�; �; x1 : �1; x : � ` e # �2 ) e� �; �; x1 : �1 ` x1 # � ) e�1�; � ` (lam x : �:e) # �1 ! �2 ) (lam x1 : �1:let x = e�1 in e� end) (elab-lam-anno)�; � ` e1 " �1 ! �2 ) e�1 �; � ` e2 # �1 ) e�2�; � ` e1(e2) " �2 ) e�1(e�2) (elab-app-up)�; � ` e1(e2) " �1 ) e� � j= �1 � �2�; � ` e1(e2) # �2 ) e� (elab-app-down)�; � ` e1 " �1 ) e�1 �; �; x : �1 ` e2 " �2 ) e�2�; � ` let x = e1 in e2 end " �2 ) let x = e�1 in e�2 end (elab-let-up)�; � ` e1 " �1 ) e�1 �; �; x : �1 ` e2 # �2 ) e�2�; � ` let x = e1 in e2 end # �2 ) let x = e�1 in e�2 end (elab-let-down)�; �; f : � ` u # � ) u��; � ` (�x f : �:u) " � ) (�x f : �:u�) (elab-�x-up)�; �; f : � ` u # � ) u� �; �; x : � ` x # � 0 ) e��; � ` (�x f : �:u) # � 0 ) let x = (�x f : �:u�) in e� end (elab-�x-down)�; � ` e # � ) e��; � ` (e : �) " � ) e� (elab-anno-up)�; � ` (e : �) " �1 ) e� � j= �1 � �2�; � ` (e : �) # �2 ) e� (elab-anno-down)Figure 4.10: The elaboration rules for ML�0 (C) (II)
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4.2. ELABORATION 65notice the occurrences of major types, that is types which do not begin with a � quanti�er, in theelaboration rules. The use of major types is mostly a pragmatic strategy which aims for making theelaboration more 
exible. After introducing the existential dependent types in the next chapter,we will introduce a coercion function in Subsection 5.2.1 to replace this strategy.Theorem 4.2.2 We have the following.1. If �; � ` e " � ) e� is derivable, then �; � ` e� : � is derivable and jej �= je�j.2. If �; � ` e # � ) e� is derivable, then �; � ` e� : � is derivable and je�j �= jej.Proof (1) and (2) follow straightforwardly from a simultaneous structural induction on thederivations D of �; � ` e " � ) e� and �; � ` e # � ) e�. We present a few cases.�; � ` e " �a : 
:� ) e� � ` i : 
D = �; � ` e " � [a 7! i]) e�[i] By induction hypothesis, �; � ` e� : (�a : 
:�) isderivable and je�j �= jej. This leads to the following.�; � ` e� : (�a : 
:�) � ` i : 
�; � ` e�[i] : � [a 7! i] (ty-iapp)Clearly, je�[i]j = je�j �= jej.�; � ` x " �1 ) e� � j= �1 � �2D = �; � ` x # �2 ) e� By induction hypothesis, �; � ` e� : �1 is derivable andje�j �= x. Hence we have the following.�; � ` e� : �1 � j= �1 � �2�; � ` e� : �2 (ty-eq)�; �; x : �1 ` e # �2 ) e�D =�; � ` (lam x:e) # �1 ! �2 ) (lam x : �1:e�1) By induction hypothesis, �; �; x : �1 ` e� :�2 is derivable and je�j �= jej. This yields the following.�; �; x : �1 ` e� : �2�; � ` (lam x : �1:e�) : �1 ! �2 (ty-lam)Note jlam x : �1:e�j = lam x:je�j �= lam x:jej = jlam x:ej. Hence, we are done.�; �; x1 : �1; x : � ` e # �2 ) e� �; �; x1 : �1 ` x1 # � ) e�1D =�; � ` (lam x : �:e) # �1 ! �2 ) (lam x1 : �1:let x = e�1 in e� end) By induction hypoth-esis, both �; �; x1 : �1; x : � ` e� : � and �; �; x1 : �1 ` e�1 : � are derivable, and je�j �= jej andje�1j �= x1. This leads to the following.�; �; x1 : �1 ` e�1 : � �; �; x1 : �1; x : � ` e� : �2�; �; x1 : �1 ` let x = e�1 in e� end : �2 (ty-let)�; � ` (lam x1 : �1:let x = e�1 in e� end) : �1 ! �2 (ty-lam)
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66 CHAPTER 4. UNIVERSAL DEPENDENT TYPESNotice that we have the following.jlam x1 : �1:let x = e�1 in e� endj = lam x1:let x = je�1j in je�j end�= lam x1:let x = x1 in je�j end�= lam x:je�j �= lam x:jej = jlam x:ej:This concludes the case.�; �; f : � ` u # � ) u� �; �; x : � ` x # � 0 ) e�D =�; � ` (�x f : �:u) # � 0 ) let x = (�x f : �:u�) in e� end By induction hypothesis, �; �; f :� ` u� : � and �; �; x : � ` e� : � 0 are derivable. This leads to the following.�; �; f : � ` u� : ��; � ` (�x f : �:u�) : � (ty-�x) �; �; x : � ` e� : � 0�; � ` let x = (�x f : �:u�) in e� end : � 0 (ty-let)Also by induction hypothesis, ju�j �= juj and x �= je�j. This yields the following.jlet x = (�x f : �:u�) in e� endj = let x = (�x f:ju�j) in je�j end�= let x = (�x f:juj) in x end�= (�x f:juj) = j(�x f:u)jNote let x = (�x f:juj) in x end �= (�x f:juj) follows from Corollary 2.3.13.All other cases can be treated similarly.The description of type reconstruction as static semantics is intuitively appealing, but thereis still a gap between the description and its implementation. There, elaboration rules explicitlygenerate constraints, and thus reduce dependent type-checking to constraint satisfaction. This isthe subject of the next subsection.4.2.3 Elaboration as Constraint GenerationOur objective is to turn the elaboration rules in Figure 4.9 and Figure 4.10 into rules which generateconstraints immediately when applied. For this purpose, we extend the language for type indexobjects as follows. existential variables Aindex objects i; j ::= � � � j Aexistential contexts  ::= � j  ;A : 
existential substitutions � ::= [] j �[A 7! i]Intuitively speaking, the existential variables are used to represent unknown type indices duringelaboration so that we can postpone the solutions to these indices until we have enough informationon them.We now list all the constraint generation rules in Figure 4.11 and Figure 4.12. Note that weassume A is not declared in  when when we expand  to  ;A : 
. Also we always assume that 1 and  2 share no common existential variables when we form the context  1;  2. Also notice theoccurrence of a in the rules (constr-pi-intro-1) and (constr-pi-intro-2). We decorate a with
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4.2. ELABORATION 67 to prevent any existential variable declared in  from unifying with an index i in which there arefree occurrences of a . Note ~a and � stand for a 1 ; : : : ; a n and a 1 : 
1; : : : ; a n : 
n, respectively,where ~a = a1; : : : ; an and � = a1 : 
1; : : : ; an : 
n. If a proposition P is also declared in �, thenlabel all the free index variables in P with  . We de�ne label(�) as follows.label(�) = ; label(�; a ) = label(�) [ dom( )A judgement of form � � � :  can be derived through the following rules.` �[ictx]� ` [] : � �1 ` i : 
 A 62 label(�1) �1; �2[A 7! i] ` � :  �1; �2 ` �[A 7! i] : A : 
;  Also we use 9( ):� for 9A1 : 
1 : : : 9An : 
n:�, where  = A1 : 
1; : : : ; An : 
n.Given an index context � and an existential context  , we can form a mixed context (� j  ) asfollows. (� j  ) =  (� j �) = �(a 1 : 
1; � j A : 
;  ) = ( A : 
; (a 1 : 
1 j �;  ) if A 2 dom( 1).a 1 : 
1; (� j A : 
;  ) if A 62 dom( 1);Judgements of forms (� j  ) ` i : 
 and (� j  ) ` � : � are derived as usual, that is, similar tojudgements of forms � ` i : 
.Proposition 4.2.3 Assume that � � � :  is derivable.1. If (� j  ) ` i : 
 is derivable then so is �[�] ` i[�] : 
[�].2. If (� j  ) ` � : � is derivable then so is �[�] ` � [�] : �.3. If (� j  ) ` �[ctx] is derivable then so is �[�] ` �[�][ctx].Proof These immediately follows from structural induction on the derivations of (� j  ) ` i : 
,(� j  ) ` � : �, and (� j  ) ` �[ctx], respectively.A judgement of form �; � ` e " � )[ ] � basically means that e elaborates into some expressionwith a synthesized type � while generating the constraint � in which all existential variables aredeclared in  . Similarly, a judgement of form �; � ` e # � )[ ] � means that e elaborates into someexpression against a given type � while generating the constraint � in which all existential variablesare declared in  . Therefore, we have �nally turned type-checking into constraint satisfaction.Given an index context � and a constraint formula �, we de�ne 8(�):� as follows.8(�):� = � 8(�; a : 
):� = 8(�):8a : 
:� 8(�; P ):� = 8(�):P � �Proposition 4.2.4 Suppose that either �; � ` e " � )[ ] � or �; � ` e # � )[ ] � is derivable.Then (� j  ) ` �[ctx], (� j  ) ` � : � and (� j  ) ` � : o are derivable.
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68 CHAPTER 4. UNIVERSAL DEPENDENT TYPES
�; � ` e " � )[ ] � (� j  ) ` 
 : �s�; � ` e " � )[ ;A : 
] � (constr-weak)�; � ` e " �a : 
:� )[ ] ��; � ` e " � [a 7! A])[ ;A : 
] � (constr-pi-elim)�; a : 
; � ` e[a 7! a ] # � )[ ] � (� j  ) ` �[ctx]�; � ` �a : 
:e # �a : 
:� )[ ] 8(a : 
):� (constr-pi-intro-1)�; a : 
; � ` e # � )[ ] � (� j  ) ` �[ctx]�; � ` e # �a : 
:� )[ ] 8(a : 
):� (constr-pi-intro-2)�(x) = � (� j  ) ` �[ctx]�; � ` x " � )[ ] > (constr-var-up)�; � ` x " �1 )[ 2;  1] > (� j  2) ` �2 : � (� j  2) ` �[ctx]�; � ` x # �2 )[ 2] 9( 1):�1 � �2 (constr-var-down)S(c) = �a1 : 
1 : : :�an : 
n:�(i) (�; ) ` �[ictx]�; � ` c " �(i[a1; : : : ; an 7! A1; : : : ; An]))[ ;A1 : 
1; : : : ; An : 
n] > (constr-cons-wo-up)�; � ` c " �(i1))[ 2;  1] >(� j  2) ` �(i2) : � (� j  2) ` �[ctx]�; � ` c # �(i2))[ 2] 9( 1):�(i1) � �(i2) (constr-cons-wo-down)S(c) = �a1 : 
1 : : :�an : 
n:� ! �(i)�; � ` e # � [a1; : : : ; an 7! A1; : : : ; An])[ ;A1 : 
1; : : : ; An : 
n] ��; � ` c(e) " �(i[a1; : : : ; an 7! A1; : : : ; An]))[ ;A1 : 
1; : : : ; An : 
n] � (constr-cons-w-up)�; � ` c(e) " �(i1))[ 2;  1] �(� j  2) ` �(i2) : � (� j  2) ` �[ctx]�; � ` c(e) # �(i2))[ 2] 9( 1):� ^ �(i1) � �(i2) (constr-cons-w-down)(� j  ) ` �[ctx]�; � ` hi " 1)[ ] > (constr-unit-up)(� j  ) ` �[ctx]�; � ` hi # 1)[ ] > (constr-unit-down)�; � ` e1 " �1 )[ ] �1 �; � ` e2 " �2 )[ ] �2�; � ` he1; e2i " �1 � �2 )[ ] �1 ^ �2 (constr-prod-up)�; � ` e1 # �1 )[ ] �1 �; � ` e2 # �2 )[ ] �2�; � ` he1; e2i # �1 � �2 )[ ] �1 ^ �2 (constr-prod-down)Figure 4.11: The constraint generation rules for ML�0 (C) (I)
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4.2. ELABORATION 69
p # �1 ) (p�;�1; �1) �; � 1 ; �;�1 ` e # �2 )[ ] �(� j  ) ` �1 ) �2 : � (� j  ) ` �[ctx]�; � ` (p) e) # (�1 ) �2))[ ] 8(� 1 ):� (constr-match)�; � ` (p) e) # (�1 ) �2))[ ] �1 �; � ` ms # (�1 ) �2))[ ] �2�; � ` (p) e j ms) # (�1 ) �2))[ ] �1 ^ �2 (constr-matches)�; � ` e " �1 )[ ] �1 �; � ` ms # (�1 ) �2))[ ] �2�; � ` (case e of ms) # �2 )[ ] �1 ^ �2 (constr-case)�; �; x : �1 ` e # �2 )[ ] ��; � ` (lam x:e) # �1 ! �2 )[ ] � (constr-lam)�; �; x : � ` e # �2 )[ ] � �; �; x : �1 ` x # � )[ ] �1�; � ` (lam x : �:e) # �1 ! �2 )[ ] � ^ �1 (constr-lam-anno)�; � ` e1 " �1 ! �2 )[ ] �1 �; � ` e2 # �1 )[ ] �2�; � ` e1(e2) " �2 )[ ] �1 ^ �2 (constr-app-up)�; � ` e1(e2) " �1 )[ 2;  1] � (� j  2) ` �2 : � (� j  2) ` �[ctx]�; � ` e1(e2) # �2 )[ 2] 9( 1):� ^ �1 � �2 (constr-app-down)�; � ` e1 " �1 )[ ] �1 �; �; x : �1 ` e2 " �2 )[ ] �2�; � ` (let x = e1 in e2 end) " �2 )[ ] �1 ^�2 (constr-let-up)�; � ` e1 " �1 )[ ] �1 �; �; x : �1 ` e2 # �2 )[ ] �2�; � ` (let x = e1 in e2 end) # �2 )[ ] �1 ^ �2 (constr-let-down)�; �; f : � ` u # � )[ ] ��; � ` (�x f : �:u) " � )[ ] � (constr-�x-up)�; �; f : � ` u # � )[ ] � �; �; x : � ` x # �1 )[ ] �1�; � ` (�x f : �:u) # �1 )[ ] � ^ �1 (constr-�x-down)�1; �2; � ` e # � )[ ] � �1 ` � : ��1; �2; � ` (e : �) " � )[ ] � (constr-anno-up)�; � ` (e : �) " �1 )[ 2;  1] > (� j  2) ` �2 : � (� j  2) ` �[ctx]�; � ` (e : �) # �2 )[ 2] 9( 1):�1 � �2 (constr-anno-down)Figure 4.12: The constraint generation rules for ML�0 (C) (II)
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70 CHAPTER 4. UNIVERSAL DEPENDENT TYPESProof This simply follows from a simultaneous structural induction on the derivations of �; � `e " � )[ ] � and �; � ` e " � )[ ] �.Theorem 4.2.5 relates the constraint generation rules to the elaboration rules in Figure 4.9 andFigure 4.10, justifying the correctness of these constraint generation rules.Theorem 4.2.5 We have the following.1. Suppose that �; � ` e " � )[ ] � is derivable. If �[�] j= �[�] is provable for some � such that� � � :  is derivable, then there exists e� such that �[�]; �[�] ` e " � [�]) e� is derivable.2. Suppose that �; � ` e # � )[ ] � is derivable. If �[�] j= �[�] is provable for some � such that� � � :  is derivable, then there exists e� such that �[�]; �[�] ` e # � [�]) e� is derivable.Proof (1) and (2) follows from a simultaneous structural induction on the derivations D of� ` e " � )[ ] � and �; � ` e # � )[ ] �. We present several cases as follows.�; a : 
; � ` e # � )[ ] �D =�; � ` e # �a : 
:� )[ ] 8(a : 
):� Note that (8(a : 
):�)[�] = 8(a : 
[�]):�[�] since� � � :  is derivable. The derivation of �[�] j= 8(a : 
[�]):�[�] must be of the followingform. �[�]; a : 
[�] j= �[�]�[�] j= 8(a : 
[�]):�[�]By induction hypothesis, �[�]; a : 
[�]; �[�] ` e # � [�] ) e� is derivable. This leads to thefollowing. �[�]; a : 
[�]; �[�] ` e # � [�]) e��[�]; �[�] ` e # �a : 
[�]:� [�]) e� (elab-pi-intro-1)Note that �(a : 
[�]):� [�] is (�(a : 
):�)[�], and we are done.�; � ` e1 " �1 )[ ] �1 �; � ` e2 " �2 )[ ] �2D = �; � ` he1; e2i " �1 � �2 )[ ] �1 ^ �2 Then there exists � such that � j= (�1 ^�2)[�] is derivable. This implies that both � j= �1[�] and � j= �2[�] are derivable. Byinduction hypothesis, for i = 1; 2, �[�]; �[�] ` ei " �i[�]) e�i are derivable for some e�i . Thisleads to the following.�[�]; �[�] ` e1 " �1[�]) e�1 �[�]; �[�] ` e2 " �2[�]) e�2�[�]; �[�] ` e " �1[�1] � �2[�2]) he�1; e�2i (elab-prod-up)Note that (�1 � �2)[�] = �1[�] � �2[�]. Hence we are done.�; � ` e0 " �0 )[ ] �1 �; � `ms # (�0 ) �))[ ] �2D = �; � ` (case e0 of ms) # � )[ ] �1 ^�2 Then �[�] j= (�1^�2)[�2] is deriv-able for some � such that �� � :  holds. This implies � j= �1[�] and � j= �2[�] are derivable.
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4.2. ELABORATION 71By induction hypothesis, �[�]; �[�] ` e0 " �0[�]) e�0 and �[�]; �[�] ` ms # �0[�]) � [�]) ms�are derivable for some e�0 and ms�. This leads to the following.�[�]; �[�] ` e0 " �0[�]) e� �; � ` ms # (�0[�]) � [�])) ms��[�]; �[�] ` (case e0 of ms) # � [�]) (case e� of ms�) (elab-case)Hence we are done.�; � ` e1 " �1 ! �2 )[ ] �1 �; � ` e2 # �1 )[ ] �2D = �; � ` e1(e2) " �2 )[ ] �1 ^ �2 Then �[�] j= (�1 ^�2)[�] is deriv-able for some � such that � � � :  is derivable. Hence, �[�] j= �1[�] is derivable, and thisyields that �[�]; �[�] ` e1 " �1[�] ! �2[�] ) e�1 is derivable for some e�1. Also by inductionhypothesis, �[�]; �[�] ` e2 # �1[�]) e�2 is derivable for some e�2 since �[�] j= �2[�] is derivable.This yields the following.�[�]; �[�] ` e1 " �1[�]! �2[�]) e�1 �[�]; �[�] ` e2 # �1[�]) e�2�[�]; �[�] ` e1(e2) " �2[�]) e�1(e�2) (elab-app-up)Hence we are done.�; � ` e1(e2) " �1 )[ 2;  1] � (� j  2) ` �2 : � (� j  2) ` �[ctx]D = �; � ` e1(e2) # �2 )[ 2] 9( 1):� ^ �1 � �2 Then the following�[�2] j= (9( 1):� ^ �1 � �2)[�2]is derivable for some �2 such that � � � :  2 holds. Note that(9( 1):� ^ �1 � �2)[�2] = 9( 1):�[�2] ^ �1[�2] � �2[�2];and therefore �[�2] j= 9( 1):�[�2] ^ �1[�2] � �2[�2] is derivable. This means that (�[�2] j=�[�2]^�1[�2] � �2[�2])[�1] is derivable for some �1 such that �[�2] ` �1 :  1 holds. This impliesthat �� �2[�1 :  2;  1 is also derivable. By induction hypothesis, �[�]; �[�] ` e1(e2) " �2[�])e� is derivable for � = �2[ �1. Since both (� j  2) ` �[ctx] and (� j  2) ` �2 : � are derivable,we have �[�] = �[�2][�1] = �[�2], �[�] = �[�2][�1] = �[�2], and �2[�] = �2[�2][�1] = �2[�2].Therefore, �[�2]; �[�2] ` e1(e2) " �2[�2]) e� is derivable.�; � ` e1 " �1 )[ ] �1 �; �; x : �1 ` e2 # �2 )[ ] �2D = �; � ` (let x = e1 in e2 end) # �2 )[ ] �1 ^ �2 Then �[�] j= (�1^�2)[�] is derivablefor some � such that � � � :  2 holds. Clearly, (�1 ^ �2)[�] = �1[�] ^ �2[�], and therefore,both �[�] j= �1[�] and �[�] ` �2[�] are derivable. By induction hypothesis, both �[�]; �[�] `e1 " �1[�] ) e�1 and �[�]; �[�]; x : �1[�] ` e2 # �2[�] ) e�2 are derivable. This leads to thefollowing.�[�]; �[�] ` e1 " �1[�]) e�1 �[�]; �[�]; x : �1[�] ` e2 # �2[�]) e�2�[�]; �[�] ` let x = e1 in e2 end # �2[�]) let x = e�1 in e�2 end (elab-let-down)Hence we are done.
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72 CHAPTER 4. UNIVERSAL DEPENDENT TYPES�; � ` e # � )[ ] � � ` � : �D = �; � ` (e : �) " � )[ ] � Then �[�] j= �[�] is derivable for some � such that �� � : holds. By induction hypothesis, �[�]; �[�] ` e # � [�]) e� is derivable for some e�. Since �cannot contain any existential variables, � [�] = � . This leads to the following.�[�]; �[�] ` e # � ) e��[�]; �[�] ` (e : �) " � ) e� (elab-anno-up)All other cases can be handled similarly.Given a closed expression e in the external language DML0(C), we try to derive a judgementof form �; � ` e " � ) [ ] �. This can succeed if there are enough type annotations in e. ByTheorem 4.2.5, e is typable if and only if � j= 9( ):� is provable. In this way, type-checking inML�0 (C) is reduced to constraint satisfaction.There is still some indeterminacy in the constraint generation rules, which has to be handled inan implementation. For instance, if both of the rules (constr-pi-intro-1) and (constr-pi-intro-2)are applicable, it must be decided which one is to be applied. We will explain some of these issuesin Chapter 8.4.2.4 Some Informal Explanation on Constraint Generation RulesWe �rst explain why the rule (constr-weak) is needed. Note that in the following rule�; � ` e1 " �1 )[ ] �1 �; � ` e2 " �2 )[ ] �2�; � ` he1; e2i " �1 � �2 )[ ] �1 ^ �2 (constr-prod-up)the two premises must have the same existential variable declaration  . However, it is most likelythat �; � ` e1 " �1 )[ 1] �1 and �; � ` e1 " �1 )[ 2] �1 are derived for di�erent �1 and �2. Inorder to obtain the same �, the rule (constr-weak) needs to be applied. Now the question is whywe do not replace the rule (constr-prod-up) with the following.�; � ` e1 " �1 )[ 1] �1 �; � ` e2 " �2 )[ 2] �2�; � ` he1; e2i " �1 � �2 )[ 1;  2] �1 ^ �2Unfortunately, this replacement can readily invalidate Proposition 4.2.4, and thus breaks down theproof of Theorem 4.2.5. We present such an example. Suppose we try to derive the following forsome �.a : 
;x : �(A1); y : �(A2) ` let z = hx; yi in z end # �(a) � �(a))[A1 : 
;A2 : 
] �Hence, we need to derive the following for some � and �0.a : 
;x : �(A1); y : �(A2) ` hx; yi " � )[A1 : 
;A2 : 
] �0However, it is impossible to �nd  1 and  2 such that  1;  2 = A1 : 
;A2 : 
 and botha : 
;x : �(A1); y : �(A2) ` x " �1 )[ 1] �1 and a : 
;x : �(A1); y : �(A2) ` y " �2 )[ 2] �2
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4.2. ELABORATION 73are derivable for some �1;�1 and �2;�2, respectively. For instance, if  1 = A1 : 
, then thejudgement a : 
;x : �(A1); y : �(A2) ` x " �1 ) [ 1] �1 is ill-formed since A2 is not declaredanywhere.We now brie
y mention how these constraint generation rules are implemented. We associate afunction up with the judgements of form �; � ` e " � )[ ] �, which, when given a triple (�;�; e),returns a triple (�;  ;�). Similarly, we associate a function down with the judgements of form �; � `e # � )[ ] �, which returns � when given (�;�; e;  ; �). There are also occasions where we need avariant up0 of up which returns a pair (�;�) when given a quadruple (�;�; e;  ). For instance, whencomputing down(�;�; let x = e1 in e2 end;  ; �2), we need to compute up0(�;�; e1;  ) to get a pair(�1;�1) and then compute down(�; (�; x : �1); e2;  ; �2) to get �2. The result of down(�;�; let x =e1 in e2 end;  ; �2) is then �1 ^ �2. The actual implementation simply follows the constraintgeneration rules, and therefore we omit the further details.4.2.5 An Example on ElaborationWe now present a simple example in full details to illustrate how the constraint generation rulesin Figure 4.11 and Figure 4.12 are applied. Unlike in ML0, the type-checking is rather involvedin ML�0 (C), and therefore we strongly recommend that the reader follow through these detailscarefully. This will be especially helpful if the reader intends to understand how type-checkingis performed for existential dependent types, which is a highly complicated subject in the nextchapter.The following is basically the auxiliary tail-recursive function in the body of the reverse functionin Figure 1.1, but we have replaced the polymorphic type 'a list with the monomorphic typeintlist. We will not introduce polymorphic types until Chapter 6.fun rev(nil, ys) = ys| rev(x::xs, ys) = rev(xs, x::ys)where rev <| {m:nat} {n:nat} intlist(m) * intlist(n) -> intlist(m+n)This code corresponds to the following expression in the formal external language DML0(C),�x rev : (�m : nat:�n : nat:intlist(m) � intlist(n)! intlist(m+ n)):bodywherebody = lam pair:case pair of hnil; ysi =) ys j hcons(hx; xsi); ysi =) rev(hxs; cons(hx; ysi)i)For the sake of simplicity, we will omit the parts of a constraint generation rule that do not generateconstraints when we write out constraint generation rules in the following presentation.Let revCode be the above DML0(C) expression. We aim for constructing a derivation of thefollowing judgement �; � ` revCode " � )[�] �0for some � and �0. Hence, the derivation must be of the following form�; rev : � ` body # � )[�] �0�; � ` revCode " � )[�] �0 (constr-�x-up)
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74 CHAPTER 4. UNIVERSAL DEPENDENT TYPESand � = �m : nat:�n : nat:intlist(m) � intlist(n)! intlist(m+ n):Then we should have a derivation of the following form for some �1,m : nat; n : nat; rev : � ` body # �)[�] �1m : nat; rev : � ` body # �n : nat:�)[�] 8n : nat:�1 (constr-pi-intro-2)�; rev : � ` body # � )[�] 8m : nat:8n : nat:�1 (constr-pi-intro-2)where �0 = 8m : nat:8n : nat:�1 and � = intlist(m) � intlist(n)! intlist(m+n). Then weshould reach a derivation of the following form,�; � ` case pair of ms # intlist(m+ n))[�] �1m : nat; n : nat; rev : � ` body " �)[�] �1 (constr-lam)where � = m : nat; n : nat, � = rev : �; pair : intlist(m) � intlist(n), and ms ishnil; ysi =) ys j hcons(hx; xsi); ysi =) rev(hxs; cons(hx; ysi)i)Then we should reach a derivation of the following form for some �3;�2 and �3 such that �1 =�2 ^ �3.�; � ` pair " �3 )[�] �2 �; � ` ms # (�3 ) intlist(m+ n)))[�] �3�; � ` case pair of ms # intlist(m+ n))[�] �2 ^ �3 (constr-case)Clearly, we have the following derivation for �3 = intlist(m) � intlist(n) and �2 = >.�(pair) = �3�; � ` pair " �3 )[�] �2 (constr-var-up)Then we should reach a derivation of the following form for �3 = �4 ^ �5,D1 D2�; � ` ms # (intlist(m) � intlist(n)) intlist(m+ n)))[�] �4 ^�5 (constr-matches)where D1 is a derivation of�; � ` hnil; ysi =) ys # (intlist(m) � intlist(n)) intlist(m+ n)))[�] �4and D2 is a derivation of�; � ` hcons(hx; xsi); ysi =) ys # (intlist(m) � intlist(n)) intlist(m+ n)))[�] �5Clearly, D1 is of the following form for some p1; �1 and �1,hnil; ysi # �3 � (p1;�1; �1) �; �1; �;�1 ` ys # �4 )[�] �4�; � ` hnil; ysi =) ys # �3 ) �4 )[�] �4 (constr-match)
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4.2. ELABORATION 75where �4 = intlist(m+ n). Notice that we have the following derivation for p1 = hnil; ysi; �1 =0 := m and �1 = ys : intlist(n).S(nil) = intlist(0)nil # intlist(m)� (nil; 0 := m; �) ys # intlist(n)� (ys; �; ys : intlist(n))hnil; ysi # �3 � (p1;�1; �1)Hence we have the following derivation for �4 = 8(�1):intlist(n) � intlist(m+ n).�1(ys) = intlist(n)�; �1; �;�1 ` ys " intlist(n))[�] >�; �1; �;�1 ` ys # �4 )[�] intlist(n) � intlist(m+ n) (constr-var-down)�; � ` hnil; ysi =) ys # �3 ) �4 )[�] �4 (constr-match)Now let us turn our attention to D2. Clearly, D2 is of the following form for some p2; �2 and �2,hcons(hx; xsi); ysi # �3 � (p2;�2; �2) �; �2; �;�2 ` rev(hxs; cons(hx; ysi)i) # �4 )[�] �05�; � ` hcons(hx; xsi); ysi =) ys # (�3 ) �4))[�] �5where �5 = 8(�2):�05. Notice that we have the following derivation D3S(cons) = �cons x # int� (x; �;x : int) xs # intlist(a)� (xs; �;xs : intlist(a))hx; xsi� (hx; xsi; �;x : int; xs : intlist(a))cons(hx; xsi) # intlist(m)� (cons[a](hx; xsi); a : nat; a+ 1 := m;x : int; xs : intlist(a))where �cons = �a : nat:int � intlist(a) ! intlist(a + 1). This leads to the derivation belowfor p2 = hcons[a](hx; xsi); ysi; �2 = a : nat; a + 1 := m and �2 = x : int; xs : intlist(a); ys :intlist(n). D3 ys # intlist(n)� (ys; �; ys : intlist(n))hcons(hx; xsi); ysi # �3 � (p2;�2; �2) (elab-pat-prod)We now have the task to construct a derivation of the following form for some �1; �2 and  ,�; �2; �;�2 ` rev " �1 ! �2 )[ ] �6 �; �2; �;�2 ` hcons(hx; xsi); ysi # �2 )[ ] �7�; �2; �;�2 ` rev(hxs; cons(hx; ysi)i) " �1 )[ ] �6 ^ �7...�; �2; �;�2 ` rev(hxs; cons(hx; ysi)i) # �4 )[�] �05 (constr-app-down)Obviously, we have the following derivation for�1 = intlist(M) � intlist(N) �2 = intlist(M +N)  =M : nat;N : nat �6 = >:�; �2; �;�2 ` rev " �m : nat:�n : nat:intlist(m) � intlist(n)! intlist(m+ n))[�] >�; �2; �;�2 ` rev " �n : nat:intlist(M) � intlist(n)! intlist(M + n))[M : nat] >�; �2; �;�2 ` rev " �1 ! �2 )[ ] �6
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76 CHAPTER 4. UNIVERSAL DEPENDENT TYPESThen we need to construct a derivation of the following form,�; �2; �;�2 `# intlist(M))[ ] �8 �; �2; �;�2 ` cons(hx; ysi) # intlist(N))[ ] �9�; �2; �;�2 ` hxs; cons(hx; ysi)i # �1 )[ ] �8 ^ �9where �7 = �8 ^ �9.Clearly, we have the following derivation for �8 = intlist(a) � intlist(M).�2(xs) = intlist(n)�; �2; �;�2 ` xs " intlist(n))[ ] > (constr-var-up)�; �2; �;�2 ` xs # intlist(M))[ ] �8 (constr-var-down)Let D4 be following derivation, �2(x) = int�; �2; �;�2 ` x " int)[ ;L : nat] > (constr-var-up)�; �2; �;�2 ` x # int)[ ;L : nat] > ^ int � int (constr-var-down)and D5 be the following derivation.�2(ys) = intlist(n)�; �2; �;�2 ` ys " intlist(n))[ ;L : nat] > (constr-var-up)�; �2; �;�2 ` ys # intlist(L))[ ;L : nat] > ^ intlist(n) � intlist(L) (constr-var-down)Therefore, we have the following derivationS(cons) = �cons D4 D5�; �2; �;�2 ` hx; ysi # int � intlist(L))[ ;L : nat] �10 (constr-prod-down)�; �2; �;�2 ` cons(hx; ysi) " intlist(L+ 1))[ ;L : nat] > ^ �10 (constr-cons-w-up)�; �2; �;�2 ` cons(hx; ysi) # intlist(N))[ ] �9 (constr-app-down)for �9 = 9(L : nat):> ^ �10 ^ intlist(L+ 1) � intlist(N), where �10 = > ^ int � int ^ > ^intlist(n) � intlist(L). So far we have constructed a derivation of�; �2; �;�2 ` rev(hxs; cons(hx; ysi)i) " �2 )[ ] �6 ^ �7;which then leads to the following for �05 = 9( ):�6 ^ �7 ^ intlist(M +N) � intlist(m+ n).�; �2; �;�2 ` rev(hxs; cons(hx; ysi)i) " �2 )[ ] �6 ^ �7�; �2; �;�2 ` rev(hxs; cons(hx; ysi)i) # �4 )[�] �05 (constr-app-down)We have �nally �nished the construction of a derivation of �; � ` revCode " � )[�] �0 for�0 = 8m : nat:8n : nat:�1 = 8m : nat:8n : nat:�2 ^ �3 = 8m : nat:8n : nat:>^ �4 ^�5= 8m : nat:8n : nat:> ^ (0 := m � intlist(n) � intlist(m+ n)) ^ �5�5 = 8a : nat:a+ 1 := m � �05= 8a : nat:a+ 1 := m � 9M : nat:9N : nat:�6 ^ �7 ^ intlist(M +N) � intlist(m+ n)= 8a : nat:a+ 1 := m � 9M : nat:9N : nat:> ^�7 ^ intlist(M +N) � intlist(m+ n)�7 = �8 ^ �9 == 9(L : nat):intlist(a) � intlist(M) ^> ^ �10 ^ intlist(L+ 1) � intlist(N)�10 = > ^ int � int ^ > ^ intlist(n) � intlist(L)
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4.2. ELABORATION 77If we replace �(i) � �(j) with i := j and remove all >, then �0 can be reduced to the following.8m : nat:8n : nat:(0 := m � n := m+ n)^8a : nat:a+ 1 := m � ^9M : nat:9N : nat:(9(L : nat):a :=M ^ n := L ^ L+ 1 := N) ^M +N := m+ nIf we eliminate all the existential quanti�ers in �0 by substituting n for L, a for M and n+ 1 forN , we obtain the following constraint.8m : nat:8n : nat:(0 := m � n := m+ n)^8a : nat:a+ 1 := m � (a := a ^ n := n ^ n+ 1 := n+ 1 ^ a+ (n+ 1) := m+ n)The validity of the constraint can be readily veri�ed. Therefore j= � is derivable, implying thatrevCode is well-typed.The elimination of existential quanti�ers is crucial to simplifying constraints, and thereforecrucial to the practicality of our approach. We address this issue in the next subsection.4.2.6 Elimination of Existential VariablesIt is shown that all existential variables can be eliminated from the constraint generated after theexample in the last subsection is elaborated. Our observation indicates that this is the case foralmost of all the examples in our experiment. This suggests that we eliminate as many existentialquanti�ers as possible in a constraint before passing it to a constraint solver.The rule for eliminating existential quanti�ers in constraints are presented in Figure 4.13. Ajudgement of form � ` i : 
 ) � means that � ` i : 
 is derivable if � j= � is. This is re
ected inthe following proposition.Theorem 4.2.6 If both � ` i : 
 ) � and � j= � are derivable, then � ` i : 
 is also derivable.Proof This simply follows from a structural induction on the derivation D of � ` i : 
 ) �. Wepresent one case.� ` i : 
 ) �1 �; a : 
 ` P : o) �2D =� ` i : fa : 
 j Pg ) P [a 7! i] ^�1 ^ 8(a : 
):�2 Since � j= P [a 7! i] ^ �1 ^ 8(a : 
):�2is derivable, � j= P [a 7! i], � j= �1 and �; a : 
 ` �2 are also derivable. By inductionhypothesis, � ` i : 
 and �; a : 
 ` P : o is derivable. This leads to the following.� ` i : 
 �; a : 
 ` P : o � j= P [a 7! i]� ` i : fa : 
 j Pg (index-subset)All other cases can be handled similarly.We use solve(A : 
; �) # (i; �0) to mean that solving � for A yields an index i and a constraint�0. Also solves( ; �) # (�; �0) means that solving � for the existential variables declared in  generates a substitution � with domain  and a constraint �0. Finally, elimExt(�) # �0 meansthat eliminating all the existential variables in � yields a constraint �0.
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78 CHAPTER 4. UNIVERSAL DEPENDENT TYPESProposition 4.2.7 We have the following.1. Suppose �;�1 ` solve(A : 
; �) # (i; �0) is derivable. If �; �1 j= �0[A 7! i] is derivable thenso is �; �1 j= �[A 7! i].2. Suppose � ` solves( ; �) # (�; �0). If � j= �0 is derivable then so is � j= �[�].3. Suppose � ` elimExt(�) # �0 is derivable. If � j= �0 is derivable then so is � j= �.Proof (1) follows from a structural induction on the derivation of �;�1 ` solve(A : 
; �) # (i; �0),and (2) follows from a structural induction on the derivation of � ` solves( ; �) # (�; �0) with thehelp of (1). (3) then follows from (2).We have thus established the correctness of the rules for eliminating existential variables in con-straints.4.3 SummaryThe language ML�0 (C), which extends the language ML0 with universal dependent types, is for-mulated to parameterize over a given constraint domain C.We call the type system of ML�0 (C) a restricted form of dependent type system for the followingreason. We view both index objects and expressions in ML�0 (C) as terms. In this view, the typeof a term can depend on the value of terms. For instance, the type of reverse[n](l), which isintlist(n), depends on n. An alternative is to view index objects as types, and therefore toregard the type system of ML�0 (C) as a polymorphic type system. However, this alternative leadssome serious complications. For instance, it is unclear what expressions are of type i if i is an indexobject. Also this view complicates the interpretation of subset sorts signi�cantly.The operational semantics of ML�0 (C) is presented in the style of natural semantics, in whichtype indices are never evaluated. This highlights our language design decision which requires thereasoning on type indices be done statically. It is then proven that ML�0 (C) enjoys the typepreservation property (Theorem 4.1.6). We emphasize that one can always evaluate type indicesif one chooses to. However, there is simply no such a need for doing this. Clearly, this must bechanged if run-time type-checking becomes necessary, but we currently reject all programs whichcannot pass (dependent) type-checking.Another important aspect of ML�0 (C) is that there are no more untyped expressions which aretypable in ML�0 (C) than in ML0 (Theorem 4.1.9). This distinguishes our study from those whichemphasize on enriching a type system to make more expressions typable. Our objective is to assignexpressions more accurate types rather than make more expressions typable.Theorem 4.2.5 constitutes a major contribution of the thesis. It yields a strong justi�cationfor the methodology which we have adopted for developing dependent type systems in practicalprogramming. Dependent types and their usefulness in programming have been noticed for at leastthree decades. However, the great di�culty in designing a type-checking algorithm for dependenttype system has always been a major obstacle which hinders the wide use of dependent types inprogramming. We brie
y explain the reason as follows.In a fully dependent type system such as the one which underlies LF (Harper, Honsell, andPlotkin 1993) or Coq (Coquand and Huet 1986), there is no di�erentiation between the type index
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4.3. SUMMARY 79� ` a : b� ` a : b) >�(f) = 
 ! b � ` i : 
 ) �� ` f(i) : b) �� ` i1 : 
1 ) �1 � ` i2 : 
1 ) �2� ` hi1; i2i : 
1 � 
2 ) �1 ^ �2� ` i : 
 ) �1 �; a : 
 ` P : o) �2� ` i : fa : 
 j Pg ) P [a 7! i] ^ �1 ^ 8(a : 
):�2� ` i : 
 ) � A 62 label(�)�;�1 ` solve(A : 
;A := i) # (i; �)� ` i : 
 ) � A 62 label(�)�;�1 ` solve(A : 
; i := A) # (i; �)�;�1; P ` solve(A : 
; �) # (i; �0)�;�1 ` solve(A : 
;P � �) # (i;P � �0)�;�1; a : 
1 ` solve(A : 
; �) # (i; �0)�;�1 ` solve(A : 
;8a : 
1:�) # (i;8a : 
1:�0)�;�1 ` solve(A : 
; �1) # (i; �01)�;�1 ` solve(A : 
; �1 ^ �2) # (i; �01 ^ �2)�;�1 ` solve(A : 
; �2) # (i; �02)�;�1 ` solve(A : 
; �1 ^ �2) # (i; �1 ^ �02)� ` solves(�; �) # ([]; �)�;A : 
 ` solves( ; �) # (�;�0) �; � ` solve(A : 
; �0) # �00� ` solves(A : 
;  ; �) # (� � [A 7! i];�00[A 7! i])� ` elimExt(P ) # P� ` elimExt(�1) # �01 � ` elimExt(�2) # �02� ` elimExt(�1 ^ �2) # �01 ^ �02� ` elimExt(�) # �0� ` elimExt(P � �) # P � �0�; a : 
 ` elimExt(�) # �0� ` elimExt(8(a : 
):�) # 8(a : 
):�0�;  ` elimExt(�) # �0 �; � ` solves( ; �0) # (�; �00)� ` elimExt(9( ):�) # �00Figure 4.13: The rules for eliminating existential variables
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80 CHAPTER 4. UNIVERSAL DEPENDENT TYPESobjects and the expressions in the system. In other words, every expression can be used as atype index object. Suppose that we extend the type system of ML0 with such a fully dependenttype system. In this setting, the constraint domain C is the same as the programming languageitself, and therefore, Theorem 4.2.5 o�ers little bene�t since constraint satisfaction is as di�cultas program veri�cation, which seems to be intractable in practical programming. This intuitiveargument suggests that it may not be such an attractive idea to use fully dependent types in aprogramming language.On the other hand, if we choose C to be some relatively simple constraint domain for whichthere are practical approaches to constraint satisfaction, then we are guaranteed by Theorem 4.2.5that elaboration in ML�0 (C) can be made practical. For instance, the integer constraint domainpresented in Chapter 3 falls into this category.Although it is the burden of the programmer to provide su�cient type annotations in code,our experience suggests that this requirement is not overwhelming (the part of type annotationsusually consist of less than 20% of the entire code). Also type annotations can be fully trusted asprogram documentation since they are always veri�ed mechanically, avoiding the \code-changes-but-comments-stay-the-same" common symptom in programming. Given the e�ectiveness of de-pendent types in program error detection and compiler optimization (Chapter 9) and the moderatenumber of type annotations needed for type-checking a program, we feel that the practicality ofour approach has gained some solid justi�cation.



www.manaraa.com

Chapter 5Existential Dependent TypesIn this chapter, we further enrich the type system of ML�0 (C) with existential dependent types,yielding the language ML�;�0 (C). We illustrate through examples the need for existential dependenttypes, and then formulate the corresponding typing rules and elaboration algorithm. This is similarto the development presented in the last chapter, although it is signi�cantly more involved.5.1 Existential Dependent TypesThe need for existential dependent types is immediate. The following example clearly illustratesone aspect of this point.fun filter pred nil = nil| filter pred (x::xs) = if pred(x) then x::filter(xs) else filter(xs)The function filter eliminates all elements in a list which do not satisfy a given predicate. Givena predicate p and a list l, we cannot calculate the length of filter(p)(l) in general if we onlyknow the types of p and l. Therefore, it is impossible to assign filter a dependent type of form�n : nat:intlist(n)! intlist(i) for any index i. Intuitively, we should be able to assign filterthe type �m : nat:intlist(m)! �n : nat:intlist(n);where �n : nat:intlist(n) roughly means an integer list with some unknown length.Another main reason for introducing existential dependent types is to cope with existing(library) code. For instance, let lib be a function in a library with a (non-dependent) typeintlist ! intlist. In general, we cannot re�ne the type of lib without the access to thesource code of lib. Again intuitively, we should be able to assign the function lib the following type(�n : nat:intlist(n))! (�n : nat:intlist(n))in order to check the code in which lib is called (if intlist has been re�ned). This provides asmooth interaction between dependent and non-dependent types.Also existential dependent types can facilitate array bound check elimination. For example,in some implementation of Knuth-Morris-Pratt string search algorithm, one computes an integerarray A whose elements are used later to index another array B. If we could assign array A the81
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82 CHAPTER 5. EXISTENTIAL DEPENDENT TYPEStype (�n : nat:int(n)) array, i.e., an array of natural numbers, then we would only have to checkwhether an element i in array A is less than the size of array B when we use it to index array B.It is unnecessary to check whether i is nonnegative since the type of i, �n : nat:int(n), alreadyimplies this. We refer the reader to the code in Section A.1 for more details.Our experience indicates that existential dependent types are indispensable in practice. Forinstance, almost all the examples in Appendix A use some existential dependent types.We now enrich the language ML�0 (C) with existential dependent types, and call the enrichedlanguage ML�;�0 (C). In addition to the syntax of ML�0 (C), we need the following.types � ::= : : : j (�a : 
:�)expressions e ::= : : : j hi j ei j let ha j xi = e1 in e2 endvalue forms u ::= : : : j hi j uivalues v ::= : : : j hi j viThe formation of an existential dependent type is given as follows.�; a : 
 ` � : �� ` (�a : 
:�) : � (type-sig)Also the following rule is needed for extending the type congruence relation to including existentialdependent types. �; a : 
 j= � � � 0� j= �a : 
:� � �a : 
:� 0The typing rules for existential dependent types are given below. Note that (ty-sig-elim) can beapplied only if a has no free occurrence in � and �2.�; � ` e : � [a 7! i] � ` i : 
�; � ` hi j ei : (�a : 
:�) (ty-sig-intro)�; � ` e1 : (�a : 
:�1) �; a : 
; �; x : �1 ` e2 : �2�; � ` let ha j xi = e1 in e2 end : �2 (ty-sig-elim)In addition to the evaluation rules in Figure 4.6, we need the following rules to formulate thenatural semantics of ML�;�0 (C). e ,!d vhi j ei ,!d hi j vi (ev-sig-intro)e1 ,!d hi j v1i e2[a 7! i][x 7! v1] ,!d v2let ha j xi = e1 in e2 end ,!d v2 (ev-sig-elim)Now let us prove some expected properties of ML�;�0 (C). This part of the development ofML�;�0 (C) is parallel to that of ML�0 (C).Theorem 5.1.1 (Type preservation in ML�;�0 (C)) Given e; v in ML�;�0 (C) such that e ,!d v isderivable. If �; � ` e : � is derivable, then �; � ` v : � is derivable.Proof The theorem follows from a structural induction on the derivation D of e ,!d v and thederivation of �; � ` e : � , lexicographically ordered. This is similar to the proof of Theorem 4.1.6We present several cases.
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5.1. EXISTENTIAL DEPENDENT TYPES 83e1 ,!d v1D =hi j e1i ,!d hi j v1i The last applied rule in the derivation �; � ` e : � is of the followingform. �; � ` e1 : �1[a 7! i] � ` i : 
�; � ` hi j e1i : �a : 
:�1 (ty-sig-intro)By induction hypothesis, �; � ` v1 : �1[a 7! i] is derivable, and this leads to the following.�; � ` v1 : �1[a 7! i] � ` i : 
�; � ` hi j v1i : �a : 
:�1 (ty-sig-intro)e1 ,!d hi j v1i e2[a 7! i][x 7! v1] ,!d v2D = let ha j xi = e1 in e2 end ,!d v2 The last rule in the derivation of �; � ` e : � isof form: �; � ` e1 : �a : 
:�1 �; a : 
; �; x : �1 ` e2 : �2�; � ` let ha j xi = e1 in e2 end : � (ty-sig-elim):By induction hypothesis, �; � ` hi j v1i : �a : 
:�1 is derivable. This implies that � ` i : 
and �; � ` v1 : �1[a 7! i] are derivable. Since �; a : 
; �; x : �1 ` e2 : �2 is derivable anda has no free occurrences in � and �2, a proof of �; � ` e2[a 7! i][x 7! v1] : �2 can also beconstructed. By induction hypothesis, �; � ` v2 : �2 is derivable.The other cases can be treated similarly.We extend the de�nition of the index erasure function k � k as follows.khi j eik = kekklet ha j xi = e1 in e2 endk = let x = ke1k in ke2k endThen Theorem 4.1.9, Theorem 4.1.10 and Theorem 4.1.12 all have their corresponding versions inML�;�0 (C), which we mention brie
y as follows.Theorem 5.1.2 If �; � ` e : � is derivable in ML�;�0 (C), then k�k ` kek : k�k is derivable inML0.Proof This simply follows from a structural induction on the derivation D of �; � ` e : � . Wepresent some cases.�; � ` e1 : �1[a 7! i] � ` i : 
D = �; � ` hi j e1i : �a : 
:�1 By induction hypothesis, k�k ` ke1k : k�1[a 7! i]k is deriv-able. Since k�1[a 7! i]k = k�1k = k�a : 
:�1k and khi j e1ik = ke1k, we are done.�; � ` e1 : (�a : 
:�1) �; a : 
; �; x : �1 ` e2 : �2D = �; � ` let ha j xi = e1 in e2 end : �2 By induction hypothesis, k�k ` ke1k :k�a : 
:�1k and k�; x : �1k ` ke2k : k�2k are derivable. Since k�a : 
:�1k = k�1k andk�; x : �1k = k�k; x : k�1k, this leads to the following.k�k ` ke1k : k�1k k�k; x : k�1k ` ke2k : k�2kk�k ` let x = ke1k in ke2k end : k�2k (ty-let)
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84 CHAPTER 5. EXISTENTIAL DEPENDENT TYPESNote that klet ha j xi = e1 in e2 endk is let x = ke1k in ke2k end, and we are done.All other cases can be treated similarly.Like ML�0 (C), the evaluation in ML�;�0 (C) can be simulated by the evaluation in ML0. This isstated in the theorem below.Theorem 5.1.3 If e ,!d v derivable in ML�;�0 (C), then kek ,!0 kvk is derivable in ML0.Proof This simply follows from a structural induction on the derivation D of e ,!d v. We presenta few cases as follows.e1 ,!d v1D =hi j e1i ,!d hi j v1i Then ke1k ,!0 kv1k is derivable by induction hypothesis. Sincekhi j e1ik = ke1k and khi j v1ik = kv1k;we are done.e1 ,!d hi j v1i e2[a 7! i][x 7! v1] ,!d vD = let ha j xi = e1 in e2 end ,!d v By induction hypothesis, bothke1k ,!0 khi j v1ik and ke2[a 7! i][x 7! v1]k ,!0 kvkare derivable. Note khi j v1ik = kv1k and ke2[a 7! i][x 7! v1]k = ke2k[x 7! kv1k]. This leadsto the following. ke1k ,!0 kv1k ke2k[x 7! kv1k] ,!0 kvklet x = ke1k in ke2k end ,!0 v (ev-let)Since klet ha j xi = e1 in e2 endk is let x = ke1k in ke2k end, we are done.All other cases can be handled similarly.Like Lemma 4.1.11, the following lemma is needed in the proof of Theorem 5.1.5.Lemma 5.1.4 Given a value v1 in ML�;�0 (C) such that �; � ` v1 : �a : 
:� is derivable, v1 mustbe of form hi j v2i for some value v2.Proof This follows from a structural induction on the derivation D of v1.�; � ` v1 : �1 � j= �1 � �a : 
:�D = �; � ` v1 : �a : 
:� Then �1 must be of form �a : 
:� 01. By induction hy-pothesis, v1 has the claimed form.�; � ` v : � [a 7! i] � ` i : 
D = �; � ` hi j vi : (�a : 
:�) Then v1 is hi j vi, and we are done.Note that the last applied rule in D cannot be (ty-var). Since v1 is a value, no other rules can bethe last applied rule in D. This concludes the proof.
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5.2. ELABORATION 85Theorem 5.1.5 Given �; � ` e : � derivable in ML�0 (C). If e0 = kek ,!0 v0 is derivable forsome value v0 in ML0, then there exists a value v in ML�;�0 (C) such that e ,!d v is derivable andkvk = v0.Proof The theorem follows from a structural induction on the derivation of e0 ,!0 v0 and thederivation D of �; � ` e : � , lexicographically ordered. We present a few cases.�; � ` e1 : �1[a 7! i] � ` i : 
D = �; � ` hi j e1i : (�a : 
:�1) Then khi j e1ik = ke1k ,!0 v0 is derivable in ML0. Byinduction hypothesis, e1 ,!d v1 is derivable in ML�;�0 (C) such that kv1k = v0. This yieldsthe following. e1 ,!d v1hi j e1i ,!d hi j v1i (ev-sig-intro)Note that khi j v1ik = kv1k = v0, and we are done.�; � ` e1 : (�a : 
:�1) �; a : 
;x : �1 ` e2 : �D = �; � ` let ha j xi = e1 in e2 end : � Then the derivation of kek ,!0 v0 is of thefollowing form ke1k ,!0 v01 ke2k[x 7! v01] ,!0 v0let x = ke1k in ke2k end ,!0 v0 (ev-let)By induction hypothesis, e1 ,!d v1 is derivable for some v1 such that kv1k = v01 . By The-orem 5.1.1, �; � ` v1 : (�a : 
:�1) is derivable. Therefore, Lemma 5.1.4 implies that v1 isof form hi j v2i for some v2. It then follows that both �; � ` v2 : �1[a 7! i] and � ` i : 
are derivable. This leads to a derivation of �; � ` e2[a 7! i][x 7! v2] : � since � contains nofree occurrences of a. Notice ke2[a 7! i][x 7! v2]k = ke2k[x 7! v01 ]. By induction hypothesis,e2[a 7! i][x 7! v2] ,!d v is derivable for some v such that kvk = v0. Hence, we have thefollowing, and we are done.e1 ,!d hi j v2i e2[a 7! i][x 7! v2] ,!d vlet ha j xi = e1 in e2 end ,!d v (ev-sig-elim)All other cases can be handled similarly.As a consequence, it is straightforward to conclude that ML�;�0 (C), like ML�0 (C), is also a conser-vative extension of ML0.5.2 ElaborationIn order to make ML�;�0 (C) suitable as a practical programming language, we have to be able todesign a satisfactory elaboration algorithm from DML(C) to ML�;�0 (C), where DML(C) is basicallythe external language DML0(C) present in Section 4.2 except that existential dependent types areallowed now. This turns out to be a challenging task.We present a typical con
ict which we are facing in order to do elaboration in this setting.Let us assign the type �n : nat:intlist(n) ! intlist(n) to the function rev which reverses
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86 CHAPTER 5. EXISTENTIAL DEPENDENT TYPESan integer list. Suppose that rev(l) occurs in the code, where l is an integer list. Intuitively, wesynthesize rev to rev[i] for some index i subject to the satis�ability of the index constraints, andthen we check l against type intlist(i). Suppose we then need to synthesize l, obtaining somel� with type �n : nat:intlist(n). We now get stuck because l� cannot be (successfully) checkedagainst intlist(i) for whatever i is, and a type error should then be reported. Nonetheless, itseems quite natural in this case to elaborate rev(l) intolet ha j xi = l� in ha j rev[a](x)i end;which is of type �a : nat:intlist(a). This justi�es the intuition that reversing a list with unknownlength yields a list with unknown length 1. The crucial step is to unpack l before we synthesize revto rev[i]. Also notice that this elaboration of rev(l) does not alter the operational semantics ofrev(l), although it changes the structure of the expression signi�cantly.This example suggest that we transform rev(l) into let x = l in rev(x) end before elaboration.In general, we can de�ne a variant of A-normal transform (Moggi 1989; Sabry and Felleisen 1993)as follows, which transforms expressions e in DML(C) into e.x = xlam x:e = lam x:elam x : �:e = lam x : �:e�x f:e = �x f:e�x f : �:e = �x f : �:ehi = hic = cc(e) = let x = e in c(x) endcase e of ms = let x = e in case x of ms endp) e = p) ehe1; e2i = let x1 = e1 in let x2 = e2 in hx1; x2i end ende1(e2) = let x1 = e1 in let x2 = e2 in x1(x2) end endlet x = e1 in e2 end = let x = e1 in e2 ende : � = e : �The following proposition shows that e preserves the operational semantics of the transformedexpression e.Proposition 5.2.1 We have jej �= jej for all expressions e in DML(C).Proof With Corollary 2.3.13, this follows from a structural induction on e.The strategy to transform e into e before elaborating e means that we must synthesize the typesof e1 and e2 in order to synthesize the type of an application e1(e2) since it is transformed intolet x1 = e1 in let x2 = e2 in x1(x2) end end. Clearly, this strategy rules out the following styleof elaboration, which would otherwise exist. For instance, let us assume that the type of e11It is tempting to require that reversing a list with unknown length yield a list with the same unknown length.This, however, is not helpful to justify that hl; rev(l)i is a pair of lists with the same length if we enrich our languagefurther to include e�ects. If l has no e�ects, this can be achieved using let x = l in hx; rev(x)i end.
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5.2. ELABORATION 87is �a : 
:(�(a) ! �(a)) ! �(a) and e2 is lam x:x; then synthesizing the type of e2 is clearlyimpossible but the type of e1(e2) can nonetheless be synthesized as follows.�; � ` e1 " �a : 
:(�(a)! �(a)) ! �(a)) e�1�; � ` e1 " (�(i)! �(i)) ! �(i)) e�1[i] �; � ` e2 # �(i)! �(i)) (lam x : �(i):x)�; � ` e1(e2) " �(i)) e�1[i](lam x : �(i):x)It has been observed that this style of programming does occur occasionally in practice. Therefore,we are prompted with a question about whether the above transform should always be performedbefore elaboration begins. There is no clear answer to this question at this moment. On one hand,we may require that the programmer perform the transform manually but this could be too mucha burden. On the other hand, if the transform is always performed automatically, then we maylose the ability to elaborate some programs which would otherwise be possible. More importantly,this could make it much harder to report informative error messages during type-checking. Giventhat this issue has yet to be settled in practice, it is desirable for us to separate from elaborationthe issue of transforming programs. We will address in Chapter 8 the practical issues involvingprogram transform before elaboration.In the following presentation, we will use ~a for a (possibly empty) sequence of index variablesand ~
 for a (possibly empty) sequence of sorts. Also we use ~a : ~
 for a sequence of declarationsa1 : 
1; : : : ; an : 
n, where ~a = a1; : : : ; an and ~
 = 
1; : : : ; 
n, and �(~a : ~
):� for the following.�(a1 : 
1) : : :�(an : 
n):�:We use h~a j ei and let h~a j xi = e1 in e2 end for the abbreviations de�ned as follows. If ~a isempty, we haveh~a j ei = e let h~a j xi = e1 in e2 end = let x = e1 in e2 endand if ~a is a; ~a1, we have h~a j ei = ha j h ~a1 j eiilet h~a j xi = e1 in e2 end = let ha j x1i = e1 in let h ~a1 j xi = x1 in e2 end endThe following proposition presents some properties related to these abbreviations.Proposition 5.2.2 We have the following.1. jlet h~a j xi = e1 in e2 endj �= let x = je1j in je2j end for expressions e1; e2 in ML�;�0 (C).2. Suppose that both �; � ` e1 : �(~a : ~
):�1 and �;~a : ~
; �; x : �1 ` e2 : �2 are derivable. If noneof the variables in ~a have free occurrences in �2 then �; � ` let h~a j xi = e1 in e2 end : �2 isderivable.Proof (1) simply follows from Corollary 2.3.13, and (2) follows from an induction on the numberof index variables declared in ~a.In addition, the above rev(l) example suggests that we turn both the rules (elab-let-up)and (elab-let-down) into the following forms, respectively. In other words, we always unpack alet-bound expression if its synthesized type begins with existential quanti�ers.�; � ` e1 " �(~a : ~
):�1 ) e�1 �;~a : ~
; �; x : �1 ` e2 " �2 ) e�2�; � ` let x = e1 in e2 end " �(~a : ~
):�2 ) let h~a j xi = e�1 in h~a j e�2i end
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):�1 ) e�1 �;~a : ~
; �; x : �1 ` e2 # �2 ) e�2�; � ` let x = e1 in e2 end # �2 ) let h~a j xi = e�1 in e�2 endThe rule (elab-case) must be dealt with similarly.There is yet another issue. Suppose that we need to check an expression e against a type � . Ife is a variable or an application, we must synthesize the type of e, obtaining some type � 0. At thisstage, we need to check whether an expression of type � 0 can be coerced into one of type � . Thestrategy used in the elaboration for ML�0 (C) is simply to check whether � 0 � � holds. However,this strategy is highly unsatisfactory for ML�;�0 (C) in practice. We are thus motivated to design amore e�ective approach to coercion.5.2.1 CoercionGiven types �1 and �2 in ML�;�0 (C) such that k�1k = k�2k, a coercion from �1 to �2 is an evaluationcontext E such that for every expression e of type �1, E[e] is of type �2 and jej �= jE[e]j.In Figure 5.1 we present the rules for coercion in ML�;�0 (C). A judgement of form � `coerce(�; � 0)) E means that every expression e of type � can be coerced into expression E[e] oftype � 0.Example 5.2.3 We show that the type � = �a : 
:�(a) ! �(a) can be coerced into the type� 0 = �a : 
:�(a)! �b : 
:�(b).a : 
 j= a := aa : 
 ` coerce(�(a); �(a)) ) [] a : 
 j= a := aa : 
 ` coerce(�(a); �(a)) ) []a : 
 ` coerce(�(a);�b : 
:�(b)) ) ha j []ia : 
 ` coerce(�(a)! �(a); �(a) ! �b : 
:�(b)) ) let x1 = [] in lam x2 : �(a):ha j x1(x2)i enda : 
 ` coerce(�; �(a) ! �b : 
:�(b)) ) let x1 = [][a] in lam x2 : �(a):ha j x1(x2)i end� ` coerce(�; � 0)) �a : 
:let x1 = [][a] in lam x2 : �(a):ha j x1(x2)i endWe are ready to prove the correctness of these coercion rules, which is stated as Theorem 5.2.4.Theorem 5.2.4 If �; � ` e : � and � ` coerce(�; � 0) ) E are derivable, then �; � ` E[e] : � isalso derivable and jej �= jE[e]j.Proof This follows from a structural induction on the derivation D of � ` coerce(�; � 0) ) E.We present several cases.� ` coerce(�1; � 01)) E1 � ` coerce(�2; � 02)) E2D =� ` coerce(�1 � �2; � 01 � � 02)) case [] of hx1; x2i ) hE1[x1]; E2[x2]i By induction hypoth-esis, �; �; x1 : �1; x2 : �2 ` E1[x1] : � 01 and �; �; x1 : �1; x2 : �2 ` E2[x2] : � 02 are derivable. Thisleads to the following derivation,�; � ` e : �1 � �2 hx1; x2i # �1 � �2 � (�;x1 : �1; x2 : �2) D0�; � ` hx1; x2i ) hE1[x1]; E2[x2]i : �1 � �2 ) � 01 � � 02 (ty-match)�; � ` (case e of hx1; x2i ) hE1[x1]; E2[x2]i) : � 01 � � 02 (ty-case)
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� j= i := j� ` coerce(�(i); �(j)) ) [] (coerce-datatype)` �[ictx]� ` coerce(1;1)) [] (coerce-unit)� ` coerce(�1; � 01)) E1 � ` coerce(�2; � 02)) E2� ` coerce(�1 � �2; � 01 � � 02)) case [] of hx1; x2i ) hE1[x1]; E2[x2]i (coerce-prod)� ` coerce(� 01; �1)) E1 � ` coerce(�2; � 02)) E2� ` coerce(�1 ! �2; � 01 ! � 02)) let x1 = [] in lam x2 : � 01:E2[x1(E1[x2])] end (coerce-fun)� ` coerce(�1[a 7! i]; �)) E � ` i : 
� ` coerce(�a : 
:�1; �)) E[[][i]] (coerce-pi-l)�; a : 
 ` coerce(�1; �)) E� ` coerce(�1;�a : 
:�)) �a : 
:E (coerce-pi-r)�; a : 
 ` coerce(�1; �)) E� ` coerce(�(a : 
):�1; �)) let ha j xi = [] in E[x] end (coerce-sig-l)� ` coerce(�1; � [a 7! i])) E � ` i : 
� ` coerce(�1;�(a : 
):�)) hi j Ei (coerce-sig-r)Figure 5.1: The derivation rules for coercion
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90 CHAPTER 5. EXISTENTIAL DEPENDENT TYPESwhere D0 is the following.�; �; x1 : �1; x2 : �2 ` E1[x1] : � 01 �; �; x1 : �1; x2 : �2 ` E2[x2] : � 02�; �; x1 : �1; x2 : �2 ` hE1[x1]; E2[x2]i : � 01 � � 02 (ty-prod)In addition, we have x1 �= jE1[x1]j and x2 �= jE2[x2]j. Therefore,jcase e of hx1; x2i ) hE1[x1]; E2[x2]ij �= jcase e of hx1; x2i ) hx1; x2ijSince e is of type �1 � �2, it can then be shown that jej �= jcase e of hx1; x2i ) hx1; x2ij.� ` coerce(� 01; �1)) E1 � ` coerce(�2; � 02)) E2D =� ` coerce(�1 ! �2; � 01 ! � 02)) let x1 = [] in lam x2 : � 01:E2[x1(E1[x2])] end By inductionhypothesis, �; �; x2 : � 01 ` E1[x2] : �1 is derivable. This leads to the following.�; �; x1 : �1 ! �2; x2 : � 01 ` x1 : �1 ! �2 �; �; x1 : �1 ! �2; x2 : � 01 ` E1[x2] : �1�; �; x1 : �1 ! �2; x2 : � 01 ` x1(E1[x2]) : �2 (ty-app)Then by induction hypothesis again, �; �; x1 : �1 ! �2; x2 : � 01 ` E2[x1(E1[x2])] : � 02 isderivable, and this yields the following.�; � ` e : �1 ! �2 �; �; x1 : �1 ! �2; x2 : � 01 ` E2[x1(E1[x2])] : � 02�; �; x1 : �1 ! �2 ` lam x2 : � 01:E2[x1(E1[x2])] : � 01 ! � 02 (ty-lam)�; � ` let x1 = e in lam x2 : � 01:E2[x1(E1[x2])] end : � 01 ! � 02 (ty-let)Also we have the following since �; � ` e : �1 ! �2 is derivable.jlet x1 = e in lam x2 : � 01:E2[x1(E1[x2])] endj= let x1 = jej in lam x2:jE2[x1(E1[x2])]j end�= let x1 = jej in lam x2:x1(x2) end�= let x1 = jej in x1 end (by Proposition 2.3.14 (1))�= jejThis wraps up the case.� ` coerce(�1[a 7! i]; �)) E � ` i : 
D = � ` coerce(�a : 
:�1; �)) E[[]i] Since �; � ` e : �a : 
:�1, we have the following.�; � ` e : �a : 
:�1 � ` i : 
�; � ` e[i] : �1[a 7! i] (ty-iapp)By induction hypothesis, �; � ` E[e[i]] : � is derivable and je[i]j �= jE[e[i]]j. Note jej = je[i]j,and we are done.�; a : 
 ` coerce(�1; �)) ED =� ` coerce(�1;�a : 
:�)) �a:
:E By induction hypothesis, �; a : 
; � ` E[e] : � isderivable and jej �= jE[e]j. Since there are no free occurrences of a in the types of thevariables declared in �, we have the following.�; a : 
; � ` E[e] : ��; a : 
; � ` �a : 
:E[e] : � (ty-ilam)Also j�a : 
:E[e]j = jE[e]j �= jej. Hence we are done.
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 ` coerce(�1; �)) ED =� ` coerce(�(a : 
):�1; �)) let ha j xi = [] in E[x] end By induction hypothesis, �; a :
; �; x : �1 ` E[x] : � is derivable. This leads to the following.�; � ` e : �(a : 
):�1 �; a : 
; �; x : �1 ` E[x] : ��; � ` let ha j xi = e in E[x] end (ty-sig-elim)Notice thatjlet ha j xi = e in E[x] endj = let x = jej in jE[x]j end �= let x = jej in x end �= jej:Hence we are done.� ` coerce(�1; � [a 7! i])) E � ` i : 
D = � ` coerce(�1;�(a : 
):�)) hi j Ei By induction hypothesis, �; � ` E[e] : � [a 7! i]is derivable and jej �= jE[e]j. This leads to the following.�; � ` E[e] : � [a 7! i] � ` i : 
�; � ` hi j E[e]i : �a : 
:� (ty-sig-intro)Also jhi j E[e]ij = jE[e]j �= jej, and we are done.All the rest of cases can be treated similarly.As usual, there is a gap between the elaboration rules for coercion and their implementation.We bridge the gap by presenting the constraint generation rules for coercion in Figure 5.2. Ajudgement of form � [̀ ] coerce(�; � 0)) � means that coercing � into � 0 under context � yieldsa constraint � in which all existential variables are declared in  .Theorem 5.2.5 Assume that � `[ ] coerce(�; � 0) ) � is derivable. If �[�] j= �[�] is derivablefor some existential substitution � such that �� � :  holds, then �[�] ` coerce(� [�]; � 0[�])) E isderivable for some evaluation context E.Proof The proof proceeds by a structural induction on the derivation D of � [̀ ] coerce(�; � 0))�. We present a few cases.� [̀ ] coerce(�1; � 01)) �1 � [̀ ] coerce(�2; � 02)) �2D = � [̀ ] coerce(�1 � �2; � 01 � � 02)) �1 ^ �2 Then �[�] j= (�1^�2)[�] is deriv-able, and this implies both �[�] j= �1[�] and �[�] j= �2[�] are derivable. By induction hy-pothesis, there are evaluation contexts E1 and E2 such that �[�] ` coerce(�1[�]; � 01[�])) E1and �[�] ` coerce(�2[�]; � 02[�])) E2 are derivable. This yields the following.�[�] ` coerce(�1[�]; � 01[�])) E1 �[�] ` coerce(�2[�]; � 02[�])) E2�[�] ` coerce(�1[�] � �2[�]; � 01[�] � � 02[�])) case [] of hx1; x2i ) hE1[x1]; E2[x2]i
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(� j  ) ` �(i) (� j  ) ` �(j)� [̀ ] coerce(�(i); �(j)) ) i := j (co-constr-datatype)` (� j  )[ictx]� [̀ ] coerce(1;1)) > (co-constr-unit)� [̀ ] coerce(�1; � 01)) �1 � [̀ ] coerce(�2; � 02)) �2� [̀ ] coerce(�1 � �2; � 01 � � 02)) �1 ^ �2 (co-constr-prod)� [̀ ] coerce(� 01; �1)) �1 � [̀ ] coerce(�2; � 02)) �2� [̀ ] coerce(�1 ! �2; � 01 ! � 02)) �1 ^ �2 (co-constr-fun)� [̀ ;A : 
] coerce(�1[a 7! A]; �)) �� [̀ ] coerce(�a : 
:�1; �)) 9A : 
:� (co-constr-pi-l)�; a : 
 [̀ ] coerce(�1; � [a 7! a ])) �� [̀ ] coerce(�1;�a : 
:�)) 8(a : 
):� (co-constr-pi-r)�; a : 
 [̀ ] coerce(�1[a 7! a ]; �)) �� [̀ ] coerce(�(a : 
):�1; �)) 8(a : 
):� (co-constr-sig-l)� [̀ ;A : 
] coerce(�1; � [a 7! A])) �� [̀ ] coerce(�1;�(a : 
):�)) 9A : 
:� (co-constr-sig-r)Figure 5.2: The constraint generation rules for coercion
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] coerce(�1[a 7! A]; �)) �1D =� [̀ ] coerce(�a : 
:�1; �)) 9A : 
:�1 Then �[�] j= (9A : 
:�1)[�] is derivable. Since(9A : 
:�1)[�] is 9A : 
[�]:�1[�], there exists some i such that �[�] ` i : 
[�] and �[�] j= �1[�1]for �1 = �[A 7! i]. Clearly, �[�1] = �[�]. By induction hypothesis,�[�1] ` coerce(� [�1]; � 0[�1])) E1is derivable for some evaluation context E1. Note (�1[a 7! A])[�1] = (�1[a 7! i])[�] and� [�1] = � [�]. This leads to the following.�[�] ` coerce(�1[�][a 7! i]; � [�])) E1 �[�] ` i : 
[�]�[�] ` coerce(�a : 
:�1[�]; � [�])) E1[[][i]] (co-constr-pi-l)�; a : 
 [̀ ] coerce(�1[a 7! a ]; �)) �1D =� [̀ ] coerce(�a : 
:�1; �)) 8(a : 
):�1 Then �[�] j= (�a : 
:�1)[�] is derivable forsome � such that � � � :  holds. Notice that (�a : 
:�1)[�] is �a : 
[�]:�1[�]. Hence,�[�]; a : 
[�] j= �1[�] is derivable. By induction hypothesis, the following is derivable forsome E1. �[�]; a : 
[�] ` coerce((�1[a 7! a ])[�]; � [�])) E1Note that (�1[a 7! a ])[�] = �1[�][a 7! a ]. This leads to the following.�[�]; a : 
[�] ` coerce(�1[�][a 7! a ]; � [�])) E1�[�] ` coerce(�a : 
[�]:�1[�]; � [�])) let ha j xi = [] in E1[x] end (co-constr-sig-l)Hence, we are done.All other cases can be handled similarly.We now have justi�ed the correctness of the constraint generation rules for coercion. However,there is still some indeterminacy in these rules, which we will address in Chapter 8.5.2.2 Elaboration as Static SemanticsWe list the elaboration rules for ML�;�0 (C) in Figure 5.3 and Figure 5.4. The meaning of thejudgements �; � ` e " � ) e� and �; � ` e # � ) e� are basically the same as that of thejudgements given in Figure 4.9 and Figure 4.10.The following theorem justi�es the correctness of these rules.Theorem 5.2.6 We have the following.1. If �; � ` e " � ) e� is derivable, then �; � ` e� : � is derivable and jej �= je�j.2. If �; � ` e # � ) e� is derivable, then �; � ` e� : � is derivable and jej �= je�j.Proof The proof is parallel to that of Theorem 4.2.2. (1) and (2) follow straightforwardly from asimultaneous structural induction on the derivations D of �; � ` e " � ) e� and �; � ` e # � ) e�.We present a few cases.
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�; � ` e " �a : 
:� ) e� � ` i : 
�; � ` e " � [a 7! i]) e�[i] (elab-pi-elim)�; a : 
; � ` e # � ) e��; � ` e # �a : 
:� ) (�a : 
:e�) (elab-pi-intro-1)�; a : 
; � ` e # � ) e��; � ` �a : 
:e # �a : 
:� ) (�a : 
:e�) (elab-pi-intro-2)�; � ` e # � [a 7! i]) e� � ` i : 
�; � ` e # �a : 
:� ) hi j e�i (elab-sig-intro)�(x) = � � ` �[ctx]�; � ` x " � ) x (elab-var-up)�; � ` x " �1 ) e� � ` coerce(�1; �2)) E�; � ` x # �2 ) E[e�] (elab-var-down)S(c) = �a1 : 
1 : : :�an : 
n:�(i) � ` i1 : 
1 � � � � ` in : 
n�; � ` c " �(i[a1; : : : ; an 7! i1; : : : in])) c[i1] : : : [in] (elab-cons-wo-up)�; � ` c " �(i)) e� � j= i := j�; � ` c # �(j) ) e� (elab-cons-wo-down)S(c) = �a1 : 
1 : : :�an : 
n:� ! �(i)�; � ` e # � [a1; : : : ; an 7! i1; : : : in]) e�� ` i1 : 
1 � � � � ` in : 
n�; � ` c(e) " �(i[a1; : : : ; an 7! i1; : : : in])) c[i1] : : : [in](e�) (elab-cons-w-up)�; � ` c(e) " �(i) ) e� � j= i := j�; � ` c(e) # �(j)) e� (elab-cons-w-down)�; � ` hi " 1) hi (elab-unit-up)�; � ` hi # 1) hi (elab-unit-down)�; � ` e1 " �1 ) e�1 �; � ` e2 " �2 ) e�2�; � ` he1; e2i " �1 � �2 ) he�1; e�2i (elab-prod-up)�; � ` e1 # �1 ) e�1 �; � ` e2 # �2 ) e�2�; � ` he1; e2i # �1 � �2 ) he�1; e�2i (elab-prod-down)Figure 5.3: The elaboration rules for ML�;�0 (C) (I)
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p # �1 ) (p�;�0; �0) �; �0; �;�0 ` e # �2 ) e� � ` �2 : ��; � ` (p) e) # (�1 ) �2)) (p� ) e�) (elab-match)�; � ` (p) e) # (�1 ) �2)) (p� ) e�) �; � ` ms # (�1 ) �2)) ms��; � ` (p) e j ms) # (�1 ) �2)) (p� ) e� j ms�) (elab-matches)�; � ` e " �1 ) e� �; � ` ms # (�1 ) �2)) ms��; � ` (case e of ms) # �2 ) (case e� of ms�) (elab-case)�; �; x : �1 ` e # �2 ) e��; � ` (lam x:e) # �1 ! �2 ) (lam x : �1:e�1) (elab-lam)�;x : � ` e # �2 ) e� � ` coerce(�1; �)) E�; � ` (lam x : �:e) # �1 ! �2 ) (lam x1 : �1:let x = E[x1] in e� end) (elab-lam-anno)�; � ` e1 " �1 ! �2 ) e�1 �; � ` e2 # �1 ) e�2�; � ` e1(e2) " �2 ) e�1(e�2) (elab-app-up)�; � ` e1(e2) " �1 ) e� � ` coerce(�1; �2)) E�; � ` e1(e2) # �2 ) E[e�] (elab-app-down)�; � ` e1 " �(~a : ~
):�1 ) e�1 �;~a : ~
; �; x : �1 ` e2 " �2 ) e�2�; � ` let x = e1 in e2 end " �(~a : ~
):�2 ) let h~a j xi = e�1 in h~a j e�2i end (elab-let-up)�; � ` e1 " �(~a : ~
):�1 ) e�1 �;~a : ~
; �; x : �1 ` e2 # �2 ) e�2�; � ` let x = e1 in e2 end # �2 ) let h~a j xi = e�1 in e�2 end (elab-let-down)�; �; f : � ` u # � ) u��; � ` (�x f : �:u) " � ) (�x f : �:u�) (elab-�x-up)�; �; f : � ` u # � ) u� � ` coerce(�; � 0)) E�; � ` (�x f : �:u) # � 0 ) let x = (�x f : �:u�) in E[x] end (elab-�x-down)�; � ` e # � ) e��; � ` (e : �) " � ) e� (elab-anno-up)�; � ` (e : �) " �1 ) e� � ` coerce(�1; �2)) E�; � ` (e : �) # �2 ) E[e�] (elab-anno-down)Figure 5.4: The elaboration rules for ML�;�0 (C) (II)
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96 CHAPTER 5. EXISTENTIAL DEPENDENT TYPES�; � ` e1 " �1 ! �2 ) e�1 �; � ` e2 # �1 ) e�2D = �; � ` e1(e2) " �2 ) e�1(e�2) Then by induction hypothesis, both �; � `e�1 : �1 ! �2 and �; � ` e�2 : �1 are derivable. This leads to the following.�; � ` e�1 : �1 ! �2 �; � ` e�2 : �1�; � ` e�1(e�2) : �2 (ty-app)Note je�1(e�2)j = je�1j(je�2j) �= je1j(je2j), and we are done.�; � ` e1(e2) " �1 ) e� � ` coerce(�1; �2)) ED = �; � ` e1(e2) # �2 ) E[e�] Then by induction hypothesis, �; � ` e� :�1 is derivable and je�j �= je1(e2)j. Since � ` coerce(�1; �2) ) E holds, �; � ` E[e�] : �2 isderivable by Theorem 5.2.4 and je�j �= jE[e�]j. Hence, je1(e2)j �= jE[e�]j and we are done.�; � ` e1 " �(~a : ~
):�1 ) e�1 �;~a : ~
; �; x : �1 ` e2 " �2 ) e�2D =�; � ` let x = e1 in e2 end " �(~a : ~
):�2 ) let h~a j xi = e�1 in h~a j e�2i end By induction hy-pothesis, both �; � ` e�1 : �(~a : ~
):�1 and �;~a : ~
; �; x : �1 ` e�2 : �2 are derivable. Hence,�;~a : ~
; �; x : �1 ` e�2 : �(~a : ~
):�2 is also derivable by applying the rule (trule-sig-intro)repeatedly. Then by Proposition 5.2.2, the following is derivable.�; � ` let h~a j xi = e�1 in e�2 end : �(~a : ~
):�2Note that we have the following.jlet h~a j xi = e�1 in e�2 endj = let x = je�1j in je�2j end �= let x = je1j in je2j endHence we are done.�; � ` e1 " �(~a : ~
):�1 ) e�1 �;~a : ~
; �; x : �1 ` e2 # �2 ) e�2D =�; � ` let x = e1 in e2 end # �2 ) let h~a j xi = e�1 in e�2 end By induction hypothesis, both�; � ` e�1 : �(~a : ~
):�1 and �;~a : ~
; �; x : �1 ` e�2 : �2 are derivable. Therefore, the following isderivable by Proposition 5.2.2.�; � ` let h~a j xi = e�1 in e�2 end : �2Note that we have the following.jlet h~a j xi = e�1 in e�2 endj = let x = je�1j in je�2j end �= let x = je1j in je2j endHence we are done.�; �; f : � ` u # � ) u�D =�; � ` (�x f : �:u) " � ) (�x f : �:u�) By induction hypothesis, �; �; f : � ` u� : � isderivable. This yields the following derivation.�; �; f : � ` u� : ��; � ` (�x f : �:u�) : � (ty-�x)Also we have j�x f : �:u�j = �x f:ju�j �= �x f:juj = j�x f : �:uj. This concludes the case.All other cases can be handled similar.



www.manaraa.com

5.2. ELABORATION 975.2.3 Elaboration as Constraint GenerationAs usual, there is still a gap between the description of elaboration rules for ML�;�0 (C) and anactual implementation. In order to bridge the gap, we list the constraint generation rules inFigure 5.5 and Figure 5.6.The correctness of the constraint generation rules for ML�;�0 (C) is justi�ed by the followingtheorem, which corresponds to Theorem 4.2.5.Theorem 5.2.7 We have the following.1. Suppose that � ` e " � )[ ] � is derivable. If �[�] j= �[�] is provable for some � such that� � � :  is derivable, then there exists e� such that �[�]; �[�] ` e " � [�]) e� is derivable.2. Suppose that �; � ` e # � )[ ] � is derivable. If �[�] j= �[�] is provable for some � such that� � � :  is derivable, then there exists e� such that �[�]; �[�] ` e # � [�]) e� is derivable.Proof (1) and (2) are proven simultaneously by a structural induction on the derivations D of� ` e " � )[ ] � and �; � ` e # � )[ ] �. The proof is parallel to that of Theorem 4.2.5. Wepresent a few cases.�; �; x : �1 ` e # �2 )[ ] �D =�; � ` (lam x:e) # �1 ! �2 )[ ] � By induction hypothesis, �[�]; �[�]; x : �1[�] ` e #� [�]) e� is derivable, and this yields the following.�[�]; �[�]; x : �1[�] ` e # � [�]) e��[�]; �[�] ` (lam x:e) # �1[�]! � [�]) lam x : �1[�]:e� (elab-lam)Note that (�1 ! �)[�] is �1[�]! � [�], and we are done.�; � ` e1(e2) " �1 )[ 1] �1 (� j  2) ` �2 : �(� j  2;  1) [̀�] coerce(�1; �2)) �2D = �; � ` e1(e2) # �2 )[ 2] 9( 1):�1 ^ �2 Note that (9 :�1 ^ �2)[�] is 9 :�1[�] ^�2[�]. Hence, there is an existential substitution �1 such that �[�] ` �1 �  1 holds and�[�2] j= �1[�2] ^ �2[�2] is derivable for �2 = �; �1. Hence, �[�2] j= �1[�2] and �[�2] j= �2[�2]are derivable. By induction hypothesis, �[�2]; �[�2] ` e1(e2) " �1[�2] ) e� is derivable. Also�[�2] ` coerce(�1[�2]; �2[�2]) ) E is derivable for some E by Theorem 5.2.5. This leads tothe following.�[�2]; �[�2] ` e1(e2) " �1[�2]) e� �[�2] ` coerce(�1[�2]; �2[�2])) E�[�2]; �[�2] ` e1(e2) # �2[�2]) E[e�] (elrule-app-down)Note that �[�] = �[�2], �[�] = �[�2] and �2[�] = �2[�2], and je1(e2)j �= je�j �= jE[e�]j. Hence,we are done. �; � ` e1 " �(~a : ~
):�1 )[ ] �1�;~a : 
; �; x : �1[~a 7! ~a ] ` e2 " �2 )[ ] �2D =�; � ` (let x = e1 in e2 end) " �(~a : ~
):�2 )[ ] �1 ^ 8(~a : ~
):�2 Then by assumption,the following is derivable. �[�] j= (�1 ^ 8(~a ):�2)[�]
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98 CHAPTER 5. EXISTENTIAL DEPENDENT TYPES�; � ` e " � )[ ] � (� j  ) ` 
 : �s�; � ` e " � )[ ;A : 
] � (constr-weak)�; � ` e " �a : 
:� )[ ] ��; � ` e " � [a 7! A])[ ;A : 
] � (constr-pi-elim)�; a : 
; � ` e[a 7! a ] # � )[ ] � (� j  ) ` �[ctx]�; � ` �a : 
:e # �a : 
:� )[ ] 8(a : 
):� (constr-pi-intro-1)�; a : 
; � ` e # � )[ ] � (� j  ) ` �[ctx]�; � ` e # �a : 
:� )[ ] 8(a : 
):� (constr-pi-intro-2)�; � ` e # � [a 7! A])[ ;A : 
] ��; � ` e # �a : 
:� )[ ] 9A : 
:� (constr-sig-intro)�(x) = � (� j  ) ` �[ctx]�; � ` x " � )[ ] > (constr-var-up)�; � ` x " �1 )[ 2;  1] > (� j  2) ` �2 : �(� j  2) ` �[ctx] (� j  2;  1) [̀�] coerce(�1; �2)) ��; � ` x # �2 )[ 2] 9( 1):� (constr-var-down)S(c) = �(~a : ~
):�(i) � ` �[ictx]�; � ` c " �(i[~a 7! ~A]))[ ~A : ~
] > (constr-cons-wo-up)�; � ` c " �(i1))[ 2;  1] > (� j  2) ` �(i2) : ��; � ` c # �(i2))[ 2] 9( 1):�(i1) � �(i2) (constr-cons-wo-down)S(c) = �(~a : ~
):� ! �(i) �; � ` e # � [~a 7! ~A])[ ; ~A : ~
] ��; � ` c(e) " �(i[~a 7! ~A]))[ ; ~A : ~
] � (constr-cons-w-up)�; � ` c(e) " �(i1))[ 2;  1] �(� j  2) ` �(i2) : � (� j  2) ` �[ctx]�; � ` c(e) # �(i2))[ 2] 9( 1):� ^ �(i1) � �(i2) (constr-cons-w-down)(� j  ) ` �[ctx]�; � ` hi " 1)[ ] > (constr-unit-up)(� j  ) ` �[ctx]�; � ` hi # 1)[ ] > (constr-unit-down)�; � ` e1 " �1 )[ ] �1 �; � ` e2 " �2 )[ ] �2�; � ` he1; e2i " �1 � �2 )[ ] �1 ^ �2 (constr-prod-up)�; � ` e1 # �1 )[ ] �1 �; � ` e2 # �2 )[ ] �2�; � ` he1; e2i # �1 � �2 )[ ] �1 ^ �2 (constr-prod-down)Figure 5.5: The constraint generation rules for ML�;�0 (C) (I)
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5.2. ELABORATION 99p # �1 ) (p�;�1; �1) �; � 1 ; �;�1 ` e # �2 )[ ] �(� j  ) ` �1 ) �2 : � (� j  ) ` �[ctx]�; � ` (p) e) # (�1 ) �2))[ ] 8(� 1 ):� (constr-match)�; � ` (p) e) # (�1 ) �2))[ ] �1 �; � ` ms # (�1 ) �2))[ ] �2�; � ` (p) e j ms) # (�1 ) �2))[ ] �1 ^ �2 (constr-matches)�; � ` e " �1 )[ ] �1 �; � ` ms # (�1 ) �2))[ ] �2�; � ` (case e of ms) # �2 )[ ] �1 ^ �2 (constr-case)�; �; x : �1 ` e # �2 )[ ] ��; � ` (lam x:e) # �1 ! �2 )[ ] � (constr-lam)�; �; x : � ` e # �2 )[ ] � �; �; x : �1 ` x # � )[ ] �1�; � ` (lam x : �:e) # �1 ! �2 )[ ] � ^ �1 (constr-lam-anno)�; � ` e1 " �1 ! �2 )[ ] �1 �; � ` e2 # �1 )[ ] �2�; � ` e1(e2) " �2 )[ ] �1 ^ �2 (constr-app-up)�; � ` e1(e2) " �1 )[ 2;  1] �1 (� j  2) ` �2 : �(� j  2) ` �[ctx] (� j  2;  1) [̀�] coerce(�1; �2)) �2�; � ` e1(e2) # �2 )[ 2] 9( 1):�1 ^�2 (constr-app-down)�; � ` e1 " �(~a : ~
):�1 )[ ] �1�;~a : 
; �; x : �1[~a 7! ~a ] ` e2 " �2 )[ ] �2�; � ` (let x = e1 in e2 end) " �(~a : ~
):�2 )[ ] �1 ^ 8(~a : ~
):�2 (constr-let-up)�; � ` e1 " �(~a : ~
):�1 )[ ] �1�;~a : 
; �; x : �1[~a 7! ~a ] ` e2 # �2 )[ ] �2�; � ` (let x = e1 in e2 end) # �2 )[ ] �1 ^ 8(~a : ~
):�2 (constr-let-down)�; �; f : � ` u # � )[ ] ��; � ` (�x f : �:u) " � )[ ] � (constr-�x-up)�; �; f : � ` u # � )[ ] � �; �; x : � ` x # �1 )[ ] �1�; � ` (�x f : �:u) # �1 )[ ] � ^ �1 (constr-�x-down)�; � ` e # � )[ ] ��; � ` (e : �) " � )[ ] � (constr-anno-up)�; � ` (e : �) " �1 )[ ] > (� j  ) ` �2 : �(� j  ) [̀�] coerce(�1; �2)) ��; � ` (e : �) # �2 )[ ] � (constr-anno-down)Figure 5.6: The constraint generation rules for ML�;�0 (C) (II)
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100 CHAPTER 5. EXISTENTIAL DEPENDENT TYPESThis implies that both �[�] ` �1[�] and �[�] ` 8(~a : ~
[�]):�2[�] are derivable. By induc-tion hypothesis, the following is derivable for some e�1 such that je1j �= je�1j, where ~
[�] is
1[�]; : : : ; 
n[�] for ~
 = 
1; : : : ; 
n.�[�]; �[�] ` e1 " �(~a : ~
[�]):�1[�]) e�1Notice that the derivability of �[�] ` 8(~a : ~
[�]):�2[�] implies that of �[�];~a : ~
[�] j= �2[�].By induction hypothesis, we have the following derivable for some e�2 such that je2j �= je�2j.�[�];~a [�] : 
[�]; �[�]; x : �1[~a 7! ~a ][�] ` e2 " �2[�]) e�2This yields the following derivation.�[�]; �[�] ` e1 " �(~a : ~
[�]):�1[�]) e�1�[�];~a : ~
[�]; �; x : �1[~a 7! ~a ][�] ` e2 " �2[�]) e�2�[�]; �[�] ` let x = e1 in e2 end " �(~a : ~
[�]):�2[�]) let h~a j xi = e�1 in h~a j e�2i endSo the case wraps up.�; �; f : � ` u # � )[ ] �D =�; � ` (�x f : �:u) " � )[ ] � By induction hypothesis, �[�]; �[�]; f : � [�] ` u # � [�] )u� is derivable for some u� such that juj �= ju�j, and this leads to the following.�[�]; �[�]; f : � [�] ` u # � [�]) u��[�]; �[�] ` (�x f : �:u) # � [�]) (�x f : � [�]:u�) (elab-�x)Note that j�x f : �:uj = �x f:juj �= �x f:ju�j = j�x f : � [�]:u�j, and we are done.All other cases can be treated in a similar manner.Given a program, that is, a closed expression e in DML(C), we can use the constraint generationrules to derive a judgement of form �; � ` e " � )[ ] � for some  , � and �. Assume that thisprocess succeeds. By Theorem 5.2.7 and Theorem 5.2.6, we know that e can be elaborated into anexpression e� in ML�;�0 (C) such that jej �= je�j if � j= 9( ):� can be derived. In this sense, we saythat type-checking in ML�;�0 (C) has been reduced to constraint satisfaction.5.3 SummaryIn this section, ML�0 (C) is extended with existential dependent types, leading to the languageML�;�0 (C). This extension seems to be indispensable in practical programming. For instance,existential dependent types are used in all the examples presented in Appendix A. Like ML�0 (C),ML�;�0 (C) enjoys the type preservation property and its operational semantics can be simulatedby that of ML0 (Theorem 5.1.3 and Theorem 5.1.5). Consequently, ML�;�0 (C) is a conservativeextension of ML0.ML�;�0 (C) is an explicitly typed internal programming language, and therefore, a practicalelaboration from the external language DML(C) to ML�;�0 (C) is crucial if ML�;�0 (C) is intendedfor general purpose programming. As for ML�0 (C), we achieve this by presenting a set of elaboration
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5.3. SUMMARY 101rules and then a set of constraint generation rules. The correctness of these rules are justi�ed byTheorem 5.2.6 and Theorem 5.2.7, respectively.However, there is a signi�cant issue which involves whether a variant of A-normal transformshould be performed on programs in ML�;�0 (C) before elaboration. This transform enables usto elaborate a very common form of expressions which could otherwise not be elaborated, but italso prevents us from elaborating a less common form of expressions. A serious disadvantage ofperforming the transform is that it can complicate reporting comprehensible error messages duringelaboration since the programmer may have to understand how the programs are transformed. Analternative is to allow the programmer to control the transform with the help of some sugaredsyntax. This has yet to be settled in practice. We point out that the transform is performed inour current prototype implementation.This chapter has further solidi�ed the justi�cation for the practicality of our approach toextending programming languages with dependent types. The theoretic core of this thesis consistsof Chapter 4 and Chapter 5. We are now ready to study the issues on extending ML�;�0 (C) with let-polymorphism, e�ects such as references and exception mechanism, aiming for adding dependenttypes to the entire core of ML.
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Chapter 6PolymorphismPolymorphism is the ability to abstract expressions over types. Such expressions with universallyquanti�ed types can then assume di�erent types when the universally quanti�ed type variables areinstantiated di�erently. Therefore, polymorphism provides an approach to promoting certain formof code reuse, which is an important issue in software engineering. In this chapter, we extend thelanguage ML0 to ML80 with ML-style of let-polymorphism and prove some relevant results. We thenextend the language ML�;�0 (C) to ML8;�;�0 (C), combining dependent types with let-polymorphism.The relation between ML8;�;�0 (C) and ML80 is established, parallel to that between ML�;�0 (C) andML0.Although the development of dependent types is largely orthogonal to polymorphism, it isnonetheless noticeably involved to combine these two features together. Also there are some prac-tical issues showing up when elaboration is concerned, which must be addressed carefully.6.1 Extending ML0 to ML80In this section, we extend ML0 with ML-style of let-polymorphism, yielding a polymorphic pro-gramming language ML80 . The syntax of ML80 enriches that of ML0 with the following.type variables �type constructors �types � ::= � � � j � j (�1; : : : ; �n)�type schemes � ::= � j 8�:�patterns p ::= � � � j c(~�) j c(~�)(p)expressions e ::= � � � j c(~� ) j c(~� )(e) j x(~�) j ��:evalue forms u ::= � � � j c(~� ) j c(~� )(u)values v ::= � � � j x(~� ) j c(~�) j c(~� )(v) j ��:vtype var contexts � ::= � j �; �signature S ::= � � � j S; � : � ! � � � ! � j c : 8~�:(~�)�substitutions � ::= � � � j �[� 7! � ]We use ~� for a (possibly empty) sequence of types �1; : : : ; �m. In addition, given ~� = �1; : : : ; �m,(~�)�, c(~� ) and x(~�) are abbreviations for (�1; : : : ; �m)�, c(�1) : : : (�m) and x(�1) : : : (�m), respectively.We may also write 8~�:� for 8�1 : : : 8�n:�, where ~� = �1; : : : ; �n.103
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104 CHAPTER 6. POLYMORPHISM� 2 �� ` � : � (type-var) � ` � : � (type-base)S(�) = � ! � � � ! � ! � � ` �1 : � � � � � ` �m : �� ` (�1; : : : ; �m)� : � (type-datatype)� ` 1 : � (type-unit) � ` �1 : � � ` �2 : �� ` �1 � �2 : � (type-prod)� ` �1 : � � ` �2 : �� ` �1 ! �2 : � (type-fun) �; � ` �� ` 8�:� (type-poly)Figure 6.1: Type formation rules for ML80The types in ML80 are basically those de�ned in ML0 but they may contain type variables inthis setting. A type scheme � must be of the form 8�1 � � � 8�n:� and � is � if n = 0.Notice that the treatment of patterns is non-standard. In ML, the type variables do not occurin patterns. We take this approach since it naturally follows the one we adopted for handlinguniversal dependent types in Section 4.1. However, the di�erence is largely cosmetic.6.1.1 Static SemanticsThe rules for forming legal types in ML80 are presented in Figure 6.1. Clearly, if � ` � : � isderivable, then all free type variables in � are declared in �.We present the typing rules for pattern matching in Figure 6.2. We then list all the typeinference rules for ML80 in Figure 6.3. Of course, we require that there be no free occurrences of� in �(x) for every x 2 dom(�) when the rule (ty-poly-intro) is introduced. The rules closelyresemble those for ML0 except that we now use a type variable context � in every judgementto keep track of free type variables. The let-polymorphism is enforced because (ty-let) is theonly rule which can eliminate from (ordinary) variable context the variables whose types contain8 quanti�ers.Given a substitution �, we de�ne x(~�)[�] = v[~� 7! ~� ]if �(x) = �~�:v. Notice that ~� and ~� must have the same length. Otherwise, x(~�)[�] is unde-�ned. This de�nition obviates the need for introducing expressions of form e(~�) for non-variableexpressions e, which cannot occur in ML80 since only let-polymorphism is allowed.Lemma 6.1.1 If � ` �i : � are derivable for i = 1; : : : ; n and �; ~�; � ` e : � is also derivablein ML80 , then �;�[~� 7! ~� ] ` e[~� 7! ~� ] : �[~� 7! ~� ] is derivable, where ~� = �1; : : : ; �n and~� = �1; : : : ; �n.Proof This simply follows from a structural induction on the derivation of �; ~�; � ` e : �.
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6.1. EXTENDING ML0 TO ML80 105x # � � (x : �) (pat-var)hi # 1� � (pat-unit)p1 # �1 � �1 p2 # �2 � �2hp1; p2i # �1 � �2 � �1;�2 (pat-prod)S(c) = 8�1 : : : 8�m:(�1; : : : ; �m)�c(�1) : : : (�m) # (�1; : : : ; �m)� � � (pat-cons-wo)S(c) = 8�1 : : : 8�m:(� ! (�1; : : : ; �m)�)p # � [�1; : : : ; �m 7! �1; : : : ; �m]� �c(�1) : : : (�m)(p) # (�1; : : : ; �m)� � � (pat-cons-w)Figure 6.2: Typing rules for pattern matching in ML80Lemma 6.1.2 If both �;� ` v : �1 and �;�; x : �1 ` e : � are derivable, then �;� ` e[x 7! v] : �is also derivable.Proof This simply follows from a structural induction on the derivation of �; �; x : �1 ` e : �.6.1.2 Dynamic SemanticsThe evaluation rules for formulating the natural semantics of ML80 are those for ML0 plus thefollowing rule (ev-poly), which is needed for evaluation under �.e ,!0 v��:e ,!0 ��:v (ev-poly)Note that we do not need a rule for evaluating e(�) because this expression can never occur inML80 .As usual, the type preservation theorem holds in ML80 .Theorem 6.1.3 (Type preservation for ML80) If e ,!0 v and �;� ` e : � are derivable, then�;� ` v : � is also derivable.Proof This proof proceeds by a structural induction on the derivation D of e ,!0 v, parallel tothat of Theorem 2.2.7. We present several cases.e1 ,!0 v1 e2[x 7! v1] ,!0 vD =(let x = e1 in e2 end) ,!0 v Then we also have the following derivation.�; � ` e1 : �1 �;�; x1 : �1 ` e2 : ��;� ` let x1 = e1 in e2 end : � (ty-let)
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106 CHAPTER 6. POLYMORPHISM
� ` �1 : � � � � � ` �n : � �(x) = 8�1 � � � 8�n:��;� ` x(�1) : : : (�n) : � [�1; : : : ; �n 7! �1; : : : ; �n] (ty-poly-var)S(c) = 8�1 � � � 8�n:(�1; : : : ; �n)� � ` �1 : � � � � � ` �n : ��;� ` c(�1; : : : ; �n) : (�1; : : : ; �n)� (ty-poly-cons-wo)S(c) = 8�1 � � � 8�n:� ! �� ` �1 : � � � � � ` �n : � �;� ` e : � [�1; : : : ; �n 7! �1; : : : ; �n]�; � ` c(�1; : : : ; �n)(e) : (�1; : : : ; �n)� (ty-poly-cons-w)�;� ` hi : 1 (ty-unit)�; � ` e1 : �1 �;� ` e2 : �2�;� ` he1; e2i : �1 � �2 (ty-prod)� ` �1 : � p # �1 � �0 �;�;�0 ` e : �2�;� ` p) e : �1 ) �2 (ty-match)�; � ` (p) e) : �1 ) �2 �;� `ms : �1 ) �2�;� ` (p) e j ms) : �1 ) �2 (ty-matches)�; � ` e : �1 �;� ` ms : �1 ) �2�;� ` (case e of ms) : �2 (ty-case)�; �; x : �1 ` e : �2�;� ` (lam x : �1:e) : �1 ! �2 (ty-lam)�; � ` e1 : �1 ! �2 �;� ` e2 : �1�;� ` e1(e2) : �2 (ty-app)�; � ` e1 : � �;�; x : � ` e2 : ��;� ` let x = e1 in e2 end : � (ty-let)�; �; f : � ` u : ��;� ` (�x f : �:u) : � (ty-�x)�; �; � ` e : ��;� ` ��:e : 8�:� (ty-poly-intro)Figure 6.3: Typing Rules for ML80
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6.2. EXTENDING ML�;�0 (C) TO ML8;�;�0 (C) 107By induction hypothesis, �; � ` v1 : �1 is derivable. Therefore, �; � ` e2[x1 7! v1] : � isderivable by Lemma 6.1.2. This leads to a derivation of �; � ` v : �1 by induction hypothesis.e1 ,!0 v1D =��:e1 ,!0 ��:v1 Then we also have the following derivation.�; �; � ` e1 : �1�;� ` ��:e1 : 8�:�1 (ty-poly-intro)By induction hypothesis, �;�; �; � ` v1 : �1 is derivable. This readily leads to a derivation of�; � ` ��:v1 : 8�:�1.As in ML0, types play no rôle in program evaluation. Extending the de�nition of the typeerasure function j � j as follows, we capture the indi�erence of types to evaluation in ML80 throughTheorem 6.1.4. jx(~�)j = x jc(~�)j = c jc(~�)(e)j = c(jej) j��:ej = jejTheorem 6.1.4 Given an expression e in ML80, we have the following.1. If e ,!0 v is derivable in ML80 , then jej ,!0 jvj is derivable in �patval .2. If �;� ` e : � is derivable in ML80 and jej ,!0 v0 derivable in �patval , then e ,!0 v is derivablein ML80 for some v such that jvj = v0.Proof (1) and (2) follow from a structural induction on the derivations of e ,!0 v and jej ,!0 v0,respectively.We have now �nished setting up the machinery for combining dependent types with the MLstyle of let-polymorphism.6.2 Extending ML�;�0 (C) to ML8;�;�0 (C)The language ML�;�0 (C) is extended to the language ML8;�;�0 (C) as follows. We use~i for a (possiblyempty) sequence of type indices. In addition, given ~� = �1; : : : ; �m and ~i = i1; : : : ; in, c(~�)[~i] is anabbreviation for c(�1) : : : (�m)[i1] : : : [in].type variables �types � ::= � � � j �type schemes � ::= � j 8�:�patterns p ::= � � � j c(~�)[~i] j c(~�)[~i](p)expressions e ::= � � � j c(~� )[~i] j c(~� )[~i](e) j x(~�) j ��:evalue forms u ::= � � � j c(~� )[~i] j c(~� )[~i](u)values v ::= � � � j x(~� ) j c(~�)[~i] j c(~� )[~i](v) j ��:vsignature S ::= � � � j S; � : � ! � � � ! � ! 
 ! � j S; c : 8~�:8~a : ~
:(~�)�(i)substitutions � ::= � � � j �[� 7! � ]
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108 CHAPTER 6. POLYMORPHISM� 2 � ` �[ictx]�;� ` � : � (type-var) ` �[ictx]�;� ` 1 : � (type-unit)S(�) = � ! � � � ! � ! 
 ! � �;� ` �1 : � � � � �;� ` �m : � � ` i : 
�;� ` (�1; : : : ; �m)�(i) : � (type-datatype)�;� ` �1 : � �;� ` �2 : ��;� ` �1 � �2 : � (type-prod) �;� ` �1 : � �;� ` �2 : ��;� ` �1 ! �2 : � (type-fun)�; a : 
;� ` � : ��;� ` �a : 
:� : � (type-pi) �; a : 
;� ` � : ��;� ` �a : 
:� : � (type-sig) �;�; � ` � : ��;� ` 8�:� : � (type-poly)Figure 6.4: Type formation rules for ML8;�;�0 (C)The types in ML8;�;�0 (C) are basically the types de�ned in ML�;�0 (C) but they may containtype variables in this setting. A type scheme � must then be of the form 8�1 � � � 8�n:� and � is �if n = 0. Notice that this disallows 8 quanti�ers to occur in the scope of a � or � quanti�er. Forinstance, the following is an illegal type.�n : nat:8�:(�)list(n)! (�)list(n)This restriction is also necessary for the two-phase type-checking algorithm we introduce shortly.6.2.1 Static SemanticsWe present the rules for forming legal types in Figure 6.4.Also we need the following additional rules for handling the type congruence relation.� j= � � �� j= �1 � � 01 � � � � j= �n � � 0n � j= i := i0� j= (�1; : : : ; �n)�(i) � (� 01; : : : ; � 0n)�(i0)We present the typing rules for pattern matching in Figure 6.5. Notice that in the rule(pat-cons-w), the type of a constructor c associated with a datatype constructor � is alwaysof form 8�1 : : : 8�m:�a1 : 
1 : : :�an : 
n:(� ! (�1; : : : ; �m)�(i))For instance, it is not allowed in SML to declare a datatype as follows.datatype bottom = Bottom of 'abecause this declaration assigns Bottom the type 8�:� ! bottom, which clearly is not of therequired form 8�:� ! (�)bottom.The following proposition is parallel to Proposition 4.1.8 for ML�0 (C).Proposition 6.2.1 We have the following.
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6.2. EXTENDING ML�;�0 (C) TO ML8;�;�0 (C) 109x # � � (�;x : �) (pat-var)hi # 1� (�; �) (pat-unit)p1 # �1 � (�1; �1) p2 # �2 � (�2; �2)hp1; p2i # �1 � �2 � (�1; �2; �1;�2) (pat-prod)S(c) = 8�1 : : : 8�m:�a1 : 
1 : : :�an : 
n:(�1; : : : ; �m)�(i)c(�1) : : : (�m)[a1] : : : [an] # (�1; : : : ; �m)�(j) � (a1 : 
1; : : : ; an : 
; �) (pat-cons-wo)S(c) = 8�1 : : : 8�m:�a1 : 
1 : : :�an : 
n:(� ! (�1; : : : ; �m)�(i))p # � [�1; : : : ; �m 7! �1; : : : ; �m]� (�; �)c(�1) : : : (�m)[a1] : : : [an](p) # (�1; : : : ; �m)�(j) � (a1 : 
1; : : : ; an : 
n; i := j; �; �) (pat-cons-w)Figure 6.5: Typing rules for patterns1. k� [�]k = k�k and ke[�]k = kek[k�k].2. kuk is a value form in ML80 if u is a value form in ML8;�;�0 (C).3. kvk is a value in ML80 if v is a value in ML8;�;�0 (C).4. If p # � � (�0; �0) is derivable. then kpk # k�k � k�0k is derivable.5. If match(p; v) =) � is derivable in ML8;�;�0 (C), then match(kpk; kvk) =) k�k is derivablein ML80.6. Given v; p in ML8;�;�0 (C) such that �; � ` v : � and p # � =) (�0; �0) are derivable. Ifmatch(kpk; kvk) =) �0 is derivable, then match(p; v) =) � is derivable for some � andk�k = �0.7. If � ` �1 � �2 is derivable, then k�1k = k�2k.Proof Please refer to the proof of Proposition 4.1.8.We list all the type inference rules for ML8;�;�0 (C) in Figure 6.6. The rules resemble thosefor ML�;�0 (C) very closely except that we now use a type variable context � in a judgement tokeep track of free type variables. The let-polymorphism is enforced because (ty-let) is the onlyrule which can eliminate from (ordinary) variable context a variable whose type begins with a 8quanti�er.Example 6.2.2 We present an example of type derivation in ML8;�;�0 (C). Let D1 be the followingderivation, �;�;x : � ` x : � (ty-poly-var)�;�; � ` �x : �:x : �! � (ty-lam)�; �; � ` (��:�x : �:x) : 8�:�! � (ty-poly-intro)
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110 CHAPTER 6. POLYMORPHISM
�;�; � ` e : �1 � ` �1 � �2�;�; � ` e : �2 (ty-eq)�;� ` �1 : � � � � �;� ` �n : � �(x) = 8�1 � � � 8�n:��;�; � ` x(�1) : : : (�n) : � [�1; : : : ; �n 7! �1; : : : ; �n] (ty-poly-var)�;� ` �1 : � � � � �;� ` �n : � S(c) = 8�1 � � � 8�n:��;�; � ` c(�1) � � � (�n) : � [�1; : : : ; �n 7! �1; : : : ; �n] (ty-poly-cons)�;�; � ` hi : 1 (ty-unit)�;�; � ` e1 : �1 �;�; � ` e2 : �2�;�; � ` he1; e2i : �1 � �2 (ty-prod)p # �1 � (�0; �0) �; �0; �;�0 ` e : �2�;�; � ` p) e : �1 ) �2 (ty-match)�;�; � ` (p) e) : �1 ) �2 �;�; � ` ms : �1 ) �2�;�; � ` (p) e j ms) : �1 ) �2 (ty-matches)�;�; � ` e : �1 �;�; � ` ms : �1 ) �2�;�; � ` (case e of ms) : �2 (ty-case)�; a : 
;�; � ` e : ��;�; � ` (�a : 
:e) : (�a : 
:�) (ty-ilam)�;�; � ` e : �a : 
:� � ` i : 
�;�; � ` e[i] : � [a 7! i] (ty-iapp)�;�; � ` e : � [a 7! i] � ` i : 
�;�; � ` hi j ei : (�a : 
:�) (ty-sig-intro)�;�; � ` e1 : �a : 
:�1 �; a : 
; �; x : �1 ` e2 : �2�;�; � ` let ha j xi = e1 in e2 end : �2 (ty-sig-elim)�;�; �; x : �1 ` e : �2�;�; � ` (lam x : �1:e) : �1 ! �2 (ty-lam)�;�; � ` e1 : �1 ! �2 �;�; � ` e2 : �1�;�; � ` e1(e2) : �2 (ty-app)�;�; � ` e1 : � �; �1;�; �; x : � ` e2 : ��; �1;�; � ` let x = e1 in e2 end : � (ty-let)�;�; �; f : � ` u : ��;�; � ` (�x f : �:u) : � (ty-�x)�;�; �; � ` e : ��;�; � ` ��:e : 8�:� (ty-poly-intro)Figure 6.6: Typing Rules for ML8;�;�0 (C)
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6.2. EXTENDING ML�;�0 (C) TO ML8;�;�0 (C) 111and D2 be the following one,�; �; f : 8�:�! � ` 0 : int �; � ` int : ��; �; f : 8�:�! � ` f(int) : int! int (ty-poly-var)�; �; f : 8�:�! � ` f(int)(0) : int (ty-app)and D3 be the following one.�; �; f : 8�:�! � ` false : bool �; � ` bool : ��; �; f : 8�:�! � ` f(bool) : bool! bool (ty-poly-var)�; �; f : 8�:�! � ` f(bool)(false) : bool (ty-app)Then we have the following derivation.D1 D2 D3�; �; f : 8�:�! � ` hf(int)(0); f(bool)(false)i : int � bool (ty-prod)�; �; � ` let f = ��:�x : �:x in hf(int)(0); f(bool)(false)i end : int � bool (ty-let)Lemma 6.2.3 If �;� ` �i : � are derivable for 1 = 1; : : : ; n and �;�; ~�; � ` e : � is also derivable,then �;�; �[~� 7! ~� ] ` e[~� 7! ~� ] : �[~� 7! ~� ] is derivable, where ~� = �1; : : : ; �n and ~� = �1; : : : ; �n.Proof This simply follows from a structural induction on the derivation of �;�; ~�; � ` e : �.Lemma 6.2.4 If both �;�; � ` v : �1 and �; �1;�; �; x : �1 ` e : � are derivable, then �; �1;�; � `e[x 7! v] : � is also derivable.Proof The proof follows from a structural induction on the derivation D of �; �1;�; �; x : �1 `e : �. We present one case as follows.�; �1;� ` �1 : � � � � �; �1;� ` �n : �D = �; �1;�; �; x : 8~�:� ` x(~�) : � [~� 7! ~� ] Since �;�; � ` v : 8~�:� is derivable, v is of form�~�:v1 and �;�; ~�; � ` v : � is also derivable by inverting the rule (ty-poly-intro). Werequire that ~� have no free occurrences in the types of the variables declared in �. Thisimplies that �; �1;�; ~�; � ` v : � is also derivable.Notice x(~�)[x := �~�:v1] = v1[~� 7! ~� ]. By Lemma 6.2.3, �; �1;�; � ` v[~� 7! ~� ] : � [~� 7! ~� ] isderivable since � = �[~� 7! ~� ].All other cases can be treated similarly.6.2.2 Dynamic SemanticsIn addition to the evaluation rules for ML�;�0 (C), we also need the following rule to formulate thenatural semantics of ML8;�;�0 (C). e ,!d v��:e ,!d ��:v (ev-poly)
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112 CHAPTER 6. POLYMORPHISMTheorem 6.2.5 (Type preservation for ML8;�;�0 (C)) If both e ,!d v and �;�; � ` e : � arederivable, then �;�; � ` v : � is also derivable.Proof The proof, parallel to that of Theorem 5.1.1, is based on a structural induction on thederivation D of e ,!d v and the derivation of �;�; � ` e : �, lexicographically ordered. We presenta few interesting cases as follows.e1 ,!d v1 e2[x 7! v1] ,!d vD =(let x = e1 in e2 end) ,!d v Then we also have the following derivation.�;�; � ` e1 : �1 �; �1;�; �; x1 : �1 ` e2 : ��; �1;�; � ` let x1 = e1 in e2 end : � (ty-let)By induction hypothesis, �;�; � ` v1 : �1 is derivable. Therefore, �; �1;�; � ` e2[x1 7! v1] : �by Lemma 6.2.4. This leads to a derivation of �; �1;�; � ` v : � .e1 ,!d v1D =��:e1 ,!d ��:v1 Then we also have the following derivation.�;�; �; � ` e1 : �1�;�; � ` ��:e1 : 8�:�1 (ty-poly-intro)By induction hypothesis, �;�; �; � ` v1 : �1 is derivable. This readily leads to a derivation of�;�; � ` ��:v1 : 8�:�1The rest of the cases can be treated similarly.Clearly, the de�nition of the index erasure function k � k can be extended as follows.k�k = �k8�:�k = 8�:k�kk��:ek = ��:kekkx(~� )k = x(k~�k)kc(~� )[~i]k = c(k~�k)kc(~� )[~i](e)k = c(k~�k)(kek)Now an immediate question is whether we still have the corresponding versions of Theorem 5.1.2,Theorem 5.1.3 and Theorem 5.1.5 in ML8;�;�0 (C). Unsurprisingly, the answer is positive.The relation between ML8;�;�0 (C) and ML80 is similar to that between ML�;�0 (C) and ML0.The following theorem corresponds to Theorem 5.1.2. Therefore, if an (untyped) expression in �patvalis typable in ML8;�;�0 (C), it is already typable in ML80 . This reiterates that the objective of ourwork is to assign programs more accurate types rather than make more programs typable.Theorem 6.2.6 If �;�; � ` e : � is derivable in ML8;�;�0 (C), then �; k�k ` kek : k�k is derivablein ML80.Proof The proof follows from a structural induction on the derivation of �;�; � ` e : �
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6.2. EXTENDING ML�;�0 (C) TO ML8;�;�0 (C) 113Theorem 6.2.7 If e ,!d v is derivable in ML8;�;�0 (C), then kek ,!0 kv0k is derivable in ML80.Proof This follows a structural induction on the derivation D of e ,!d v. We present a fewinteresting cases.e1 ,!d v1 e2[x 7! v1] ,!d vD =(let x = e1 in e2 end) ,!d v By induction hypothesis, ke1k ,!0 kv1k and ke2[x 7!v1]k ,!0 kvk are derivable. It can be readily veri�ed that ke2[x 7! v1]k = ke2k[x 7! kv1k].This leads to the following derivation.ke1k ,!0 kv1k ke2k[x 7! kv1k] ,!0 kvklet x = ke1k in ke2k end ,!0 kvk (ev-let)Hence, klet x = e1 in e2 endk ,!0 kvk is derivable.e1 ,!d v1D =��:e1 ,!d ��:v1 By induction hypothesis, ke1k ,!0 kv1k is derivable in ML80 . Sincek��:e1k = ��:ke1k and k��:v1k = ��:kv1k, k��:e1k ,!d k��:v1k is derivable in ML80 .Theorem 6.2.8 Given �; � ` e : � derivable in ML8;�;�0 (C). If e0 = kek ,!0 v0 is derivable forsome v0 in ML80 , then there exists v in ML8;�;�0 (C) such that e ,!d v is derivable and kvk = v0.Proof The proof is similar to that of Theorem 5.1.5, and therefore we omit it here.6.2.3 ElaborationWe slightly extend the external language DML0(C) as follows, yielding the external languageDML(C) for ML8;�;�0 (C). expressions e ::= � � � j ��:eTheoretically, there are no technical obstacles which prevent us from directly formulating elabo-ration rules and then constraint generation rules for ML8;�;�0 (C) as is done for ML�;�0 (C). However,in practice there are some serious disadvantages for doing so, which we brie
y explain as follows.In Chapter 1, we used the following example demonstrating how to re�ne a polymorphicdatatype into a polymorphic dependent type.datatype 'a list = nil | cons of 'a * 'a listtyperef 'a list of nat (* indexing datatype 'a list with nat *)with nil <| 'a list(0)| cons <| {n:nat} 'a * 'a list(n) -> 'a list(n+1)After this declaration, cons is of type8�:�n : nat:� � (�)list(n)! (�)list(n+ 1):
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114 CHAPTER 6. POLYMORPHISMSuppose that we have already re�ned the type int, assigning the types int(0) and int(1) to 0 and1, respectively. Now let us see how to elaborate the expression cons(h0; cons(h1; nili)i). Intuitively,we should instantiate the type of the �rst cons toint(0) � (int(0))list(n)! (int(0))list(n+ 1);and then check cons(h1; nili) against (int(0))list(n + 1). This leads to the instantiation of thetype of the second cons toint(0) � (int(0))list(n)! (int(0))list(n+ 1);and we then check 1 against int(0). This results in a type error since 1 cannot be of type int(0).In contrast, there exists no problem elaborating cons(0; cons(1; nil)) into an expression of type(int)list in ML80 . This would destroy the precious compatibility property we expect, that is, avalid ML program written in an external language for ML can always be treated as a valid DML(C)program. Fortunately, the reader can readily verify that the elaboration of cons(0; cons(1; nil))would have succeeded if we had started checking it against the type �a : int:int(a). This ex-ample shows that it is highly questionable to directly combine the dependent type-checking withpolymorphic type-checking.There is yet another disadvantage. One main objective of designing a dependent type systemis to enable the programmer to capture more program errors at compile time. Therefore, it iscrucial that adequately informative type error message can be issued once type-checking fails.This, however, would be greatly complicated if errors resulted from both dependent type-checkingand polymorphic type-checking are mingled together, especially given that it is already di�cultenough to report only errors from polymorphic type-checking.These practical issues prompt us to adopt a two-phase elaboration for ML8;�;�0 (C).Phase OneTheorem 6.2.6 states that if e is well-typed in ML8;�;�0 (C) then its index erasure kek is well-typed inML80 . Therefore, given a program e in DML(C), if e can be successfully elaborated in ML8;�;�0 (C),then its index erasure kek can be elaborated in ML80 . We use the W-algorithm for polymorphictype-checking in ML (Milner 1978) to check whether kek is well-typed in ML80 . This is a crucialstep towards guaranteeing full compatibility of ML8;�;�0 (C) with ML80 in the sense that a programwritten in an external language for ML80 should always be accepted by ML8;�;�0 (C) if it is byML80 . For the parts of a program which use dependent types, we expect this phase of elaborationto be highly e�cient since there are abundant programmer-supplied type annotations available.In practice, this leads to accurate type error message report because type-checking is essentiallyperformed in a top-down fashion.Phase TwoAfter the �rst phase of elaboration, we perform the following.� If a declared function is not annotated, we annotate it with the ML-type inferred for thisfunction from phase one.
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6.2. EXTENDING ML�;�0 (C) TO ML8;�;�0 (C) 115(�; �0;pos) (�; �1;pos) (�; �2;pos)(�; �1 � �2;pos) (�; �1;neg) (�; �2;pos)(�; �1 ! �2;pos)� is not �0(�; �0;neg) (�; �1;neg) (�; �2;neg)(�; �1 � �2;neg) (�; �1;pos) (�; �2;neg)(�; �1 ! �2;neg)(�; �1; s(1)) � � � (�; �m; s(m))(�; (�1; : : : ; �n)�;pos) (�; �1; s(1)) � � � (�; �m; s(m))(�; (�1; : : : ; �n)�;neg)Figure 6.7: The inference rules for datatype constructor status� For a let-expression let x = e1 in e2 end, if the inferred type scheme of x is of form 8~�:� ,we replace every free occurrence of x in e2 with x(~� ) for some appropriate ~� inferred fromthe �rst phase of elaboration. Notice that these ~� are ML-types. If the programmer wouldlike to instantiate ~� with some dependent types, this must be written in the program. Forinstance, the array subscript function sub is of the following type;8�:(�)array � int! �if we need a subscript function which only acts on an array of natural numbers in a blockof code, we can declare let subNat = sub(�i : nat:int(i)) in : : : end; this assures that thetype variable � in the type of sub is instantiated with the dependent type �i : nat:int(i),which is the type of natural numbers.� If a datatype constructor � is re�ned with index objects from sort 
, then we replace alloccurrences of (�1; : : : ; �n)� with �a : 
:(�1; : : : ; �n)�(a). This process is then performedrecursively on �i for i = 1; : : : ; n.After the above processing is done, we can readily elaborate the program in the way describedin Section 5.2. This concludes the informal description of a two-phase elaboration for ML8;�;�0 (C).6.2.4 CoercionCoercion between polymorphic datatypes needs some special care. An informal view is given asfollows. Assume that type �1 can be coerced into type �2; if � occurs positively in (�)�, then(�1)� should be able to coerce into (�2)�; if � occurs negatively in (�)�, then (�2)� should be ableto coerce into (�1)�. In order to handle more general cases, we introduce the notion of status asfollows.Let � be a datatype constructor declared in ML and ci are constructors of type 8�1 : : : 8�m:�i !(�1; : : : ; �m)� associated with � for i = 1; : : : ; n. A status s for � is a function with domaindom(s) = f1; : : : ;mg and range fpos;negg. We use s for the dual status of s, that is s(k) = negif and only if s(k) = pos for k = 1; : : : ;m.We say that � has status s if for every k 2 dom(s), (�k; �i; s(k)) can be derived for i = 1; : : : ; nwith the rules in Figure 6.7.
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116 CHAPTER 6. POLYMORPHISMThis can be readily extended to mutually recursively declared datatype constructors in ML.Assume that a datatype constructor � is of status s. We say that (�1; : : : ; �m)�(i) can be coercedinto (� 01; : : : ; � 0m)�(i) if �k coerces into � 0k for those k such that s(k) = pos and � 0k coerces into �kfor the rest.We currently disallow coercions between (�1; : : : ; �m)�(i) and (� 01; : : : ; � 0m)�(i) if � cannot beassigned a status. Clearly, it is possible to extend the range of a status function to containingneutral and mixed, which roughly mean \both positive and negative" and \neither positive nornegative", respectively. However, it is yet to see whether such extension would be of some practicalrelevance.6.3 SummaryPolymorphism is largely orthogonal to the development of dependent types. In this chapter, ML0is extended to ML80 with let-polymorphism, and this sets up the machinery we need for combiningdependent types with let-polymorphism. Then the language ML8;�;�0 (C) is introduced, whichextends ML�;�0 (C) with let-polymorphism. The relation between ML8;�;�0 (C) and ML80 is parallelto that between ML�;�0 (C) and ML0. However, some serious problems show up when elaborationis concerned. This prompts us to adopt a two-phase elaboration process, which does the usualML-type checking in the �rst phase and the dependent type-checking in the second phase. Thisseems to be a clean and practical solution.ML8;�;�0 (C) is a pure call-by-value functional programming language, that is, it contains noimperative features. Therefore, the natural move is to extend ML8;�;�0 (C) with some imperativefeatures, which consists the topic of the next chapter.
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Chapter 7E�ectsWe have so far developed the type theory of dependent types in a pure functional programminglanguage ML8;�;�0 (C), which lacks the imperative features of ML. In this chapter, we extend thelanguage ML8;�;�0 (C) to accommodate exceptions and references. We will examine the potentialproblems and present the approaches to solving them. The organization of the chapter is as follows.We �rst extend the language ML0 with the exception mechanism and formulate the languageML0;exc. After proving the type preservation theorem for ML0;exc, we extend it with the references.This yields the language ML0;exc;ref . Again, we prove the type preservation theorem for ML0;exc;ref .We then exhibit what the problems are if we extend ML8;�;�0 (C) with references and exceptionmechanism. This leads to adopting the value restriction approach (Wright 1995). Finally, we studythe relation between ML0;exc;ref and ML8;�;�0;exc;ref(C).7.1 Exception MechanismThe exception mechanism is an important feature of ML which allows programs to perform non-local \jumps" in the 
ow of control by setting a handler during evaluation of an expression thatmay be invoked by raising an exception. Exceptions are value-carrying in the sense that theycan pass values to exception handlers. Because of the dynamic nature of exception handlers, it isrequired that all the exception values have a single datatype Exc, which can then be extended bythe programmer. This is called extensible datatype. We assume that Exc is a distinguished built-inbase type, but do not concern ourselves with how constructors in this datatype are created.7.1.1 Static SemanticsThe language ML0 is extended to the language ML0;exc as follows. An answer is either a value ofan uncaught exception.base types � ::= � � � j Excexpressions e ::= � � � j raise(e) j handle e with msanswers ans ::= � � � j raise(v)In addition to the typing rules for ML0, we need the following ones for handling the newly intro-duced language constructs. 117
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118 CHAPTER 7. EFFECTSx ,!0 x (ev-var)hi ,!0 hi (ev-unit)e ,!0 raise(v)c(e) ,!0 raise(v) (ev-cons-1)e ,!0 vc(e) ,!0 c(v) (ev-cons-2)e1 ,!0 raise(v)he1; e2i ,!0 raise(v) (ev-prod-1)e1 ,!0 v1 e2 ,!0 raise(v)he1; e2i ,!0 raise(v) (ev-prod-2)e1 ,!0 v1 e2 ,!0 v2he1; e2i ,!0 hv1; v2i (ev-prod-3)e ,!0 raise(v)case e of ms ,!0 raise(v) (ev-case-1)e0 ,!0 v0 match(v0; pk) =) � for some 1 � k � n ek[�] ,!0 ans(case e0 of (p1 ) e1 j � � � j pn ) en)) ,!0 ans (ev-case-2)Figure 7.1: The natural semantics for ML0;exc (I)� ` e : � � ` ms : Exc) �� ` (handle e with ms) : � (ty-handle)� ` e : Exc� ` raise(e) : � (ty-raise)7.1.2 Dynamic SemanticsWe now present the evaluation rules for ML0;exc in Figure 7.1 and Figure 7.2, upon which thenatural semantics of ML0;exc is established. Notice that a successful evaluation of an expression eresult in either a value or an uncaught exception.Theorem 7.1.1 (Type preservation) Assume that � ` e : � is derivable in ML0;exc. If e ,!0 ansfor some answer ans, then � ` ans : � is derivable.Proof The proof is parallel to the proof of Theorem 2.2.7, following from a structural inductionon the derivation D of e ,!0 v. We present a few cases.e1 ,!0 raise(v1)D =raise(e1) ,!0 raise(v1) The derivation of � ` raise(e1) : � must be of the following
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7.1. EXCEPTION MECHANISM 119

e1 ,!0 raise(v)e1(e2) ,!0 raise(v) (ev-app-1)e1 ,!0 (lam x : �:e) e2 ,!0 raise(v)e1(e2) ,!0 raise(v) (ev-app-2)e1 ,!0 (lam x : �:e) e2 ,!0 v2 e[x 7! v2] ,!0 anse1(e2) ,!0 ans (ev-app-3)e1 ,!0 raise(v)(let x = e1 in e2 end) ,!0 raise(v) (ev-let-1)e1 ,!0 v1 e2[x 7! v1] ,!0 ans(let x = e1 in e2 end) ,!0 ans (ev-let-2)(�x f : �:u) ,!0 u[f 7! (�x f : �:u)] (ev-�x)e ,!0 raise(v)raise(e) ,!0 raise(v) (ev-raise-1)e ,!0 vraise(e) ,!0 raise(v) (ev-raise-2)e ,!0 raise(v)handle e with ms ,!0 raise(v) (ev-handler-1)e0 ,!0 raise(v0) match(v0; pk) =) � for some 1 � k � n ek[�] ,!0 anshandle e0 with (p1 ) e1 j � � � j pn ) en) ,!0 ans (ev-handler-2)e ,!0 vhandle e with ms ,!0 v (ev-handler-3)Figure 7.2: The natural semantics for ML0;exc (II)
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120 CHAPTER 7. EFFECTSform. � ` e1 : Exc� ` raise(e1) : � (ty-raise)By induction hypothesis, � ` raise(v1) : Exc is derivable. Hence, we have a derivation of� ` v1 : Exc. This leads to the following.� ` v1 : Exc� ` raise(v1) : � (ty-raise)e0 ,!0 raise(v0) match(v0; pk) =) � for some 1 � k � n ek[�] ,!0 ansD = handle e0 with (p1 ) e1 j � � � j pn ) en) ,!0 ans Then we havea derivation of the following form.� ` e0 : � � ` (p1 ) e1 j � � � j pn ) en) : Exc) �� ` (handle e0 with (p1 ) e1 j � � � j pn ) en)) : � (ty-handle)By induction hypothesis, � ` raise(v0) : � is derivable. This leads to the following derivation.� ` v0 : Exc� ` raise(v0) : � (ty-raise)Notice � ` pi ) ei : Exc ) � are derivable for 1 � i � n. Hence pk # Exc� �0 is derivablefor some �0 and �;�0 ` ek : � is derivable. By Lemma 2.2.5, � ` � : �0 is derivable. Thisleads to a derivation of � ` ek[�] : � by Lemma 2.2.4. By induction hypothesis, � ` ans : �is derivable.e0 ,!0 vD =handle e0 with ms ,!0 v Then we have a derivation of the following form.� ` e0 : � � ` ms : Exc) �� ` (handle e0 with ms) : � (ty-handle)By induction hypothesis, � ` ans : � is derivable. Hence, we are done.All other cases can be treated similarly.7.2 ReferencesA unique aspect of ML is the use of reference types to segregate mutable data structures fromimmutable ones. Given a type � , the reference type � ref stands for the type of reference cellwhich can only store a value of type � .
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7.2. REFERENCES 1217.2.1 Static SemanticsThe language ML0;exc is extended to the language ML0;exc;ref as follows. An answer is either avalue or an uncaught exception associated with a piece of memory.types � ::= � � � j � refexpressions e ::= � � � j letref M in e end j e1 := e2 j!ememory M ::= � jM;x : � is vprograms prog ::= letref M in e endanswers ans ::= letref M in v end j letref M in raise(v) endLet dom(M) be de�ned as follows.dom(�) = ; dom(M;x : � is v) = dom(M) [ fxgFor every x 2 dom(M), M(x) is v if x : � is v is declared in M . For x 2 dom(M), we useM [x := v] for the memory which replaces with x : � is v the declaration x : � is vold inM for some� and vold.We need the following typing rules for handling the newly introduced language constructs.�0 = x1 : �1 ref ; : : : ; xn : �n ref �;�0 ` vi : �i (1 � i � n)� ` (x1 : �1 is v1; : : : ; xn : �1 is vn) : �0 (ty-memo)� `M : �0 �;�0 ` e : �� ` letref M in e end : � (ty-letref)� ` e1 : � ref � ` e2 : �� ` e1 := e2 : 1 (ty-assign)� ` e : � ref� `!e : � (ty-deref)Note that we use Ref(e) as an abbreviation for let x = e in letref y : � is x in y end end.Example 7.2.1 Given a derivation D of � ` e : � , we can construct the following derivation of� ` Ref(e) : � ref .D �; x : �; y : � ref ` x : ��; x : � ` (y : � is x) : (y : � ref) �; x : �; y : � ref ` y : � ref�; x : � ` letref y : � is x in y end : � ref (ty-letref)� ` Ref(e) : � ref (ty-let)7.2.2 Dynamic SemanticsThe natural semantics of ML0;exc;ref is given in Figure 7.3 and Figure 7.4.Proposition 7.2.2 If the following is derivable, then dom(M1) � dom(M2).letref M1 in e end ,!0 letref M2 in v end
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122 CHAPTER 7. EFFECTS
letref M in hi end ,!0 letref M in hi end (ev-unit)letref M in c end ,!0 letref M in c end (ev-cons-wo)letref M1 in e end ,!0 letref M2 in raise(v) endletref M1 in c(e) end ,!0 letref M2 in raise(v) end (ev-cons-w-1)letref M1 in e end ,!0 letref M2 in v endletref M1 in c(e) end ,!0 letref M2 in c(v) end (ev-cons-w-2)letref M1 in e1 end ,!0 letref M2 in raise(v) endletref M1 in he1; e2i end ,!0 letref M2 in raise(v) end (ev-prod-1)letref M1 in e1 end ,!0 letref M2 in v1 endletref M2 in e2 end ,!0 letref M3 in raise(v) endletref M1 in he1; e2i end ,!0 letref M3 in raise(v) end (ev-prod-2)letref M1 in e1 end ,!0 letref M2 in v1 endletref M2 in e2 end ,!0 letref M3 in v2 endletref M1 in he1; e2i end ,!0 letref M3 in hv1; v2i end (ev-prod-3)letref M1 in e end ,!0 letref M2 in raise(v) endletref M1 in case e of ms end ,!0 letref M2 in raise(v) end (ev-case-1)letref M1 in e0 end ,!0 letref M2 in v0 endmatch(v0; pk) =) � for some 1 � k � nletref M2 in ek[�] end ,!0 ansletref M1 in case e0 of (p1 ) e1 j � � � j pn ) en) end ,!0 ans (ev-case-2)letref M in lam x : �:e end ,!0 letref M in lam x : �:e end (ev-lam)letref M1 in e1 end ,!0 letref M2 in raise(v) endletref M1 in e1(e2) end ,!0 letref M2 in raise(v) end (ev-app-1)letref M1 in e1 ,!0 letref M2 in lam x : �:e end endletref M2 in e2 ,!0 letref M3 in raise(v) end endletref M1 in e1(e2) end ,!0 letref M3 in raise(v) end (ev-app-2)letref M1 in e1 end ,!0 letref M2 in (lam x : �:e) endletref M2 in e2 end ,!0 letref M3 in v2 endletref M3 in e[x 7! v2] end ,!0 ansletref M1 in e1(e2) end ,!0 ans (ev-app-3)Figure 7.3: The natural semantics for ML0;exc;ref (I)
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7.2. REFERENCES 123letref M1 in e1 end ,!0 letref M2 in raise(v) endletref M1 in (let x = e1 in e2 end) end ,!0 letref M2 in raise(v) end (ev-let-1)letref M1 in e1 ,!0 v1 end letref M2 in e2[x 7! v1] end ,!0 ansletref M1 in (let x = e1 in e2 end) end ,!0 ans (ev-let-2)letref M in �x f : �:u end ,!0 letref M in u[f 7! (�x f : �:u)] end (ev-�x)letref M1 in e end ,!0 letref M2 in raise(v) endletref M1 in raise(e) end ,!0 letref M2 in raise(v) end (ev-raise-1)letref M1 in e end ,!0 letref M2 in v endletref M1 in raise(e) end ,!0 letref M2 in raise(v) end (ev-raise-2)letref M1 in e end ,!0 letref M2 in raise(v) endletref M1 in handle e with ms end ,!0 letref M2 in raise(v) end (ev-handle-1)letref M1 in e0 end ,!0 letref M2 in raise(v0) endmatch(v0; pk) =) � for some 1 � k � nletref M2 in ek[�] end ,!0 ansletref M1 in handle e0 with (p1 ) e1 j � � � j pn ) en) end ,!0 ans (ev-handle-2)letref M1 in e end ,!0 letref M2 in v endletref M1 in handle e with ms end ,!0 letref M2 in v end (ev-handle-3)letref M1;M2 in e end ,!0 ansletref M1 in letref M2 in e end end ,!0 ans (ev-extrusion)letref M1 in e1 end ,!0 letref M2 in raise(v) endletref M1 in e1 := e2 end ,!0 letref M2 in raise(v) end (ev-assign-1)letref M1 in e1 end ,!0 letref M2 in x endletref M2 in e2 end ,!0 letref M3 in raise(v) endletref M1 in e1 := e2 end ,!0 letref M3 in raise(v) end (ev-assign-2)letref M1 in e1 end ,!0 letref M2 in x endletref M2 in e2 end ,!0 letref M3 in v endletref M1 in e1 := e2 end ,!0 letref M3[x := v] in hi end (ev-assign-3)letref M1 in e end ,!0 letref M2 in raise(v) endletref M1 in !e end ,!0 letref M2 in raise(v) end (ev-deref-1)letref M1 in e end ,!0 letref M2 in x endletref M1 in !e end ,!0 letref M2 in M2(x) end (ev-deref-2)Figure 7.4: The natural semantics for ML0;exc;ref (II)
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124 CHAPTER 7. EFFECTSProof This simply follows from the formulation of the evaluation rules. Note that (ev-extrusion)is the only rule which can expand the memory.Theorem 7.2.3 (Type preservation) Given a program P = letref M in e end, if � ` P : � andP ,!0 ans are derivable in ML0;exc;ref, then � ` ans : � is also derivable in ML0;exc;ref.Proof The proof proceeds by a structural induction on the derivation D of P ,!0 ans. Wepresent a few cases.letref M1;M2 in e end ,!0 ansD =letref M1 in letref M2 in e end end ,!0 ans Then we have the following derivation.� `M1 : �1 �1 `M2 : �2 �1;�2 ` e : ��1 ` letref M2 in e end : � (ty-letref)� ` letref M1 in letref M2 in e end end : � (ty-letref)Since � `M1 : �1 and �1 `M2 : �2 are derivable, � `M1;M2 : �1;�2 is derivable. This leadsto the following. � `M1;M2 : �1;�2 �1;�2 ` e : �� ` letref M1;M2 in e end : � (ty-letref)By induction hypothesis, � ` ans : � is derivable.letref M1 in e1 end ,!0 letref M2 in x endletref M2 in e2 end ,!0 letref M3 in v endD =letref M1 in e1 := e2 end ,!0 letref M3[x := v] in hi end Then we have a derivationof the following form.� `M1 : �1 �1 ` e1 : � ref �1 ` e2 : ��1 ` e1 := e2 : 1 (ty-assign)� ` letref M1 in e1 := e2 end : 1 (ty-letref)This leads to the following.� `M1 : �1 �1 ` e1 : � ref� ` letref M1 in e1 end : � ref (ty-letref)By induction hypothesis, � ` letref M2 in x end : � ref is derivable. This implies that� `M2 : �2 is derivable for some �2 such that �2(x) = � ref . By Proposition 7.2.2, M1 �M2.Hence, �1 � �2, and we have the following derivation.� `M2 : �2 �2 ` e2 : �� ` letref M2 in e2 end (ty-letref)By induction hypothesis, � ` letref M3 in v end : � is derivable. This implies that we canderive � `M3 : �3 for some �3 and �2 � �3. Therefore, � `M3[x := v] : �3 is also derivable,and this yields the following.� `M3[x := v] : �3 �3 ` hi : 1� ` letref M3 in hi end : 1 (ty-letref)
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7.3. VALUE RESTRICTION 125letref M1 in e end ,!0 letref M2 in x endD =letref M1 in !e end ,!0 letref M2 in M2(x) end Then we have a derivation of the fol-lowing form. � `M1 : �1 �1 ` e : � ref�1 `!e : � (ty-deref)� ` letref M1 in !e end : � (ty-letref)This leads to the following.� `M1 : �1 �1 ` e1 : � ref� ` letref M1 in e1 end : � ref (ty-letref)By induction hypothesis, � ` letref M2 in x end : � ref is derivable. This implies � `M2 : �2is derivable for some �2 such that �2(x) = � ref . This then implies that �2 ` M2(x) : � isderivable. Therefore, we have the following.� `M2 : �2 �2 `M2(x) : �� ` letref M2 in M2(x) end : � (ty-letref)The rest of the cases can be handled in a similar manner.The next theorem generalizes Theorem 2.1.4.Theorem 7.2.4 We have letref M in v end ,!0 letref M in v end for all memory M andvalues v in ML0;exc;ref .Proof This simply follows from a structural induction on v.7.3 Value RestrictionWe �rst mention some problems if we extend ML0;exc;ref with dependent types and/or polymor-phism. Let us take a look at the following evaluation rules.e ,!d v(�a : 
:e) ,!d (�a : 
:v) (ev-ilam)(lam x : �:e) ,!d (lam x : �:e) (ev-lam)e ,!d v��:e ,!d ��:v (ev-poly)Clearly, evaluation can occur under both � and � but cannot under lam. This can introducea serious problem when we extend the language ML8;�;�0 (C) with e�ects such as exceptions andreferences. For instance, the following cases arise immediately.1. If evaluation is allowed under �, then the following rule must be adopted since an exceptionmay be raised during the evaluation of e.e ,!d raise(v)(�a : 
:e) ,!d raise(v) (ev-ilam-raise)However, v may contain some free occurrences of a when this rule is applied.
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126 CHAPTER 7. EFFECTS2. Similarly, we must adopt the following rule if evaluation is allowed under �.letref M1;M2 in �a : 
:e end ,!0 ansletref M1 in �a : 
:letref M2 in e end end ,!0 ans (ev-ilam-extrusion)However, M2 may contain some free occurrences of a when this rule is applied.3. If evaluation is allowed under �, then we need the following rule since an exception may beraised during the evaluation of e.e ,!d raise(v)(��:e) ,!d raise(v) (ev-poly-raise)The problem is that v may contain some free occurrences of �.4. Similarly, the following rule is also needed.letref M1;M2 in ��:e end ,!0 ansletref M1 in ��:letref M2 in e end end ,!0 ans (ev-poly-extrusion)The problem is that M2 may contain some free occurrences of �.In all of these cases, some bound variables become unbound after the evaluation. Clearly, thismust be addressed if we extend ML0;exc;ref with let-polymorphism as well as dependent types.A radical solution to all the problems above is to make sure that we never evaluate under either� or �. In other words, we should adopt instead the following rules.(�a : 
:e) ,!d (�a : 
:e) (ev-ilam) ��:e ,!d ��:e (ev-poly)This seems to be a clean solution. Unfortunately, the adoption of the above rules immediatelyfalsi�es Theorem 6.2.7 and Theorem 6.2.8 for the obvious reason that neither k�a : 
:ek nork��:ek is a value if kek is not. In order to overcome this di�culty, we require that e be a valuewhenever either �a : 
:e or ��:e occurs in an expression. This can be achieved if we require kekto be a value when the following typing rules are applied.�; a : 
;�; � ` e : ��;�; � ` (�a : 
:e) : (�a : 
:�) (ty-ilam)�;�; �; � ` e : ��;�; � ` ��:e : 8�:� (ty-poly-intro)This is called value restriction. In other words, we should formulate the above rules as follows.�; a : 
;�; � ` v : ��;�; � ` (�a : 
:v) : (�a : 
:�) (ty-ilam)�;�; �; � ` v : ��;�; � ` ��:v : 8�:� (ty-poly-intro)From now on, we always assume that value restriction is imposed unless it is stated otherwiseexplicitly.
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7.4. EXTENDING ML0;EXC;REF WITH POLYMORPHISM AND DEPENDENT TYPES 1277.4 ExtendingML0;exc;ref with Polymorphism and Dependent TypesIn this section, we extend ML0;exc;ref with let-polymorphism and dependent types, leading to thelanguage ML8;�;�0;exc;ref(C). Therefore, we have �nally designed a language in which there are featuressuch as references, exception mechanism, let-polymorphism and both universal and existential de-pendent types. Since the core of ML, that is ML without module level constructs, is basicallyML0;exc;ref with let-polymorphism, we claim that we have presented a practical approach to ex-tending the core of ML with dependent types. We regard this as the key contribution of thethesis.The complete syntax of ML8;�;�0;exc;ref(C) is given in Figure 7.5. The typing rules for ML8;�;�0;exc;ref(C)are those presented in Figure 6.6 plus those in Figure 7.6. Also the natural semantics of ML8;�;�0;exc;ref(C)is given in terms of the evaluation rules listed in Figure 7.3 and Figure 7.4 plus those in Figure 7.7.Lemma 7.4.1 (Substitution) We have the following.1. If both � ` i : 
 and �; a : 
;�; � ` e : � are derivable, then �;�; �[a 7! i] ` e[a 7! i] : � [a 7! i]is also derivable.2. If both � ` � : � and �;�; �; � ` e : � are derivable, then �;�; �[� 7! � ] ` e[� 7! � ] : �[� 7!� ] is also derivable.3. If both �;�; � ` v : �1 and �;�; �; x : �1 ` e : � are derivable, then �;�; � ` e[x 7! v] : � isalso derivable.Proof The proof is standard and therefore omitted here. Please see the proof of Lemma 4.1.4for some relevant details.Theorem 7.4.2 (Type preservation for ML8;�;�0;exc;ref(C)) If both e ,!d ans : � and �; �; � ` e : � arederivable in ML8;�;�0;exc;ref(C), then �; �; � ` ans : � is also derivable ML8;�;�0;exc;ref(C).Proof The proof follows from a structural induction on the derivation D of e ,!d ans and thederivation of �; �; � ` e : �, lexicographically ordered. We present a few cases.letref M1 in e1 end ,!d letref M2 in �a : 
:v endD =letref M1 in e1[i] end ,!d letref M2 in v[a 7! i] end Then we have a derivation of thefollowing form since �; �; � ` letref M1 in e1[i] end : � is derivable, where � = � [a 7! i].�; �; �1 ` e1 : �a : 
:� � ` i : 
�; �; �1 ` e1[i] : � [a 7! i] (ty-iapp) �; �; � `M1 : �1�; �; � ` letref M1 in e1[i] end : � [a 7! i] (ty-letref)This yields the following derivation.�; �; �1 ` e1 : �a : 
:� �; �; � `M1 : �1�; �; � ` letref M1 in e1 end : �a : 
:� (ty-letref)
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128 CHAPTER 7. EFFECTS
families � ::= (family of re�ned datatypes)signatures S ::= �S j S; � : � ! � � � ! � ! 
 ! �j S; c : ��1: : : :��m:�a1 : 
1 : : :�an : 
n:(�1; : : : ; �m)�(i)j S; c : ��1: : : :��m:�a1 : 
1 : : :�an : 
n:� ! (�1; : : : ; �m)�(i)major types � ::= � j (�1; : : : ; �m)�(i) j 1 j (�1 � �2) j (�1 ! �2)types � ::= � j (�a : 
:�) j (�a : 
:�)type schemes � ::= � j ��:�patterns p ::= x j c(�1) : : : (�m)[a1] : : : [an] j c(�1) : : : (�m)[a1] : : : [an](p)j hi j hp1; p2imatches ms ::= (p) e) j (p) e j ms)expressions e ::= x j hi j he1; e2ij c(�1) : : : (�m)[i1] : : : [in] j c(�1) : : : (�m)[i1] : : : [in](e)j (case e of ms) j (lam x : �:e) j e1(e2)j let x = e1 in e2 end j (�x f : �:v)j raise(e) j handle e with msj e1 := e2 j !ej letref M in e endj (�a : 
:v) j e[i]j hi j ei j let ha j xi = e1 in e2 endj ��:vvalue forms u ::= c(�1) : : : (�m)[i1] : : : [in] j c(�1) : : : (�m)[i1] : : : [in](u) j hij hu1; u2i j lam x : �:e j (�a : 
:u) j hi j uivalues v ::= x(�1) : : : (�m) j c(�1) : : : (�m)[i1] : : : [in] j c(�1) : : : (�m)[i1] : : : [in](v)j hi j hv1; v2i j (lam x : �:e) j (�a : 
:v) j hi j vi j (��:v)memories M ::= � jM;x : � is vprograms prog ::= letref M in e endanswers ans ::= letref M in v end j letref M in raise(v) endcontexts � ::= � j �; x : �type var ctxts � ::= � j �; �index contexts � ::= � j �; a : 
substitutions � ::= [] j �[x 7! v] j �[a 7! i] j �[� 7! � ]Figure 7.5: The syntax for ML8;�;�0;exc;ref(C)
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7.4. EXTENDING ML0;EXC;REF WITH POLYMORPHISM AND DEPENDENT TYPES 129�;�; � ` e : � �;�; � ` ms : Exc) ��;�; � ` (handle e with ms) : � (ty-handle)�;� ` � : � �;�; � ` e : Exc�;�; � ` raise(e) : � (ty-raise)�0 = x1 : �1 ref ; : : : ; xn : �n ref �;�; �0;� ` vi : �i (1 � i � n)�;�; � ` (x1 : �1 is v1; : : : ; xn : �n is vn) : �0 (ty-memo)�;�; � `M : �0 �;�; �;�0 ` e : ��;�; � ` letref M in e end : � (ty-letref)�;�; � ` e1 : � ref �;�; � ` e2 : ��;�; � ` e1 := e2 : 1 (ty-assign)�;�; � ` e : � ref�;�; � `!e : � (ty-deref)Figure 7.6: Additional typing rules for ML8;�;�0;exc;ref(C)letref M in �a : 
:v end ,!d letref M in �a : 
:v end (ev-ilam)letref M1 in e end ,!d letref M2 in raise(v) endletref M1 in e[i] end ,!d letref M2 in raise(v) end (ev-iapp-1)letref M1 in e end ,!d letref M2 in �a : 
:v endletref M1 in e[i] end ,!d letref M2 in v[a 7! i] end (ev-iapp-2)letref M1 in e end ,!d letref M2 in raise(v) endletref M1 in hi j ei end ,!d letref M2 in raise(v) end (ev-sig-intro-1)letref M1 in e end ,!d letref M2 in v endletref M1 in hi j ei end ,!d letref M2 in hi j vi end (ev-sig-intro-1)letref M1 in e1 end ,!d letref M2 in raise(v) endletref M1 in let ha j xi = e1 in e2 end end ,!d letref M2 in raise(v) end (ev-sig-elim-1)letref M1 in e1 end ,!d letref M2 in hi j vi endletref M2 in e2[a 7! i][x 7! v] end ,!d ansletref M1 in let ha j xi = e1 in e2 end end ,!d letref M2 in ans end (ev-sig-elim-2)letref M in ��:v end ,!d letref M in ��:v end (ev-poly)Figure 7.7: Additional evaluation rules for ML8;�;�0;exc;ref(C)
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130 CHAPTER 7. EFFECTSBy induction hypothesis, �; �; � ` letref M2 in �a : 
:v end : �a : 
:� is derivable. Therefore,we have a derivation of the following form.�; �; �2 ` �a : 
:v : �a : 
:� �; �; � `M2 : �2�; �; � ` letref M2 in �a : 
:v end : �a : 
:� (ty-letref)By inversion, we can assume that a : 
; �; �2 ` v : � is derivable. Therefore, by Lemma 7.4.1 (1),�; �; �2 ` v[a 7! i] : � [a 7! i] is derivable since a has no free occurrences in �2.This leads to the following derivation of �; �; � ` letref M2 in v[a 7! i] end : � [a 7! i].�; �; �2 ` v[a 7! i] : � [a 7! i] �; �; � `M2 : �2�; �; � ` letref M2 in v[a 7! i] end : � [a 7! i] (ty-letref)letref M1 in e1 end ,!d letref M2 in hi j vi endletref M2 in e2[a 7! i][x 7! v] end ,!d ansD =letref M1 in let ha j xi = e1 in e2 end end ,!d letref M2 in ans end Then we havea derivation of the following form.�; �; �1 ` e1 : �a : 
:� a : 
; �; �1; x : � ` e2 : ��; �; �1 ` let ha j xi = e1 in e2 end : � (ty-sig-elim) �; �; � `M1 : �1�; �; � ` letref M1 in let ha j xi = e1 in e2 end : � end (ty-letref)This yields the following derivation.�; �; �1 ` e1 : �a : 
:� �; �; � `M1 : �1�; �; � ` letref M1 in e1 end : �a : 
:� (ty-letref)By induction hypothesis, �; �; � ` letref M2 in hi j vi end : �a : 
:� is derivable. Therefore,we have a derivation of the following form.�; �; �2 ` v : � [a 7! i] � ` i : 
�; �; �2 ` hi j vi : �a : 
:� (ty-sig-intro) �; �; � `M2 : �2�; �; � ` letref M2 in hi j vi end : �a : 
:� (ty-letref)Note that �; �; �1 ` e2[a 7! i][x 7! v] : � is also derivable by Lemma 7.4.1. This leads to thefollowing. �; �; �2 ` e2[a 7! i][x 7! v] : � �; �; � `M2 : �2�; �; � ` letref M2 in e2[a 7! i][x 7! v] end : � (ty-letref)By induction hypothesis, ans is of type �.All other cases can be dealt with in a similar manner.Given ML8;�;�0;exc;ref(C), it is straightforward to form the language ML80;exc;ref , which extendsML0;exc;ref with let-polymorphism. Note that value restriction is also imposed to guarantee thesoundness of the type system of ML80;exc;ref . We leave the details for the interested reader.
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7.4. EXTENDING ML0;EXC;REF WITH POLYMORPHISM AND DEPENDENT TYPES 131We now extend the de�nition of the index erasure function as follows.k � k = �kraise(e)k = raise(kek)khandle e with msk = handle kek with kmskkM;x is vk = kMk; x is kvkkletref M in e endk = = letref kMk in kek endTheorem 7.4.3 Suppose that �; �; � ` e : � is derivable in ML8;�;�0;exc;ref(C). If e ,!d ans is alsoderivable in ML8;�;�0;exc;ref(C), then kek ,!0 kansk is derivable in ML80;exc;ref.Proof This follows from a structural induction on the derivationD of e ,!d ans and the derivationof �; �; � ` e : �, lexicographically ordered. We present a few cases.D =letref M in �a : 
:v end ,!d letref M in �a : 
:v end ] Notice that we have the fol-lowing. kletref M in �a : 
:v endk = letref kMk in kvk end:By Proposition 7.2.4, we haveletref kMk in kvk end ,!0 letref kMk in kvk endsince kvk is obviously a value.D =letref M in ��:v end ,!d letref M in ��:v end Notice that we have the following.kletref M in ��:v endk = letref kMk in kvk end:By Proposition 7.2.4, we haveletref kMk in kvk end ,!0 letref kMk in kvk endsince kvk is obviously a value.All other cases can be treated as done in the proof of Theorem 6.1.3.Suppose that we formulate a reduction semantics for ML8;�;�0;exc;ref(C). Then a legitimate question toask is whether an expression of form ��:e (�a : 
:e) for some non-value e can be generated duringthe reduction of a program p in which there are no such expressions. The answer is negative sinceML8;�;�0;exc;ref(C) is a call-by-value language. Therefore, not surprisingly, a type preservation theoremfor ML8;�;�0;exc;ref(C) can also be formulated and proven using reduction semantics. Usually, such atheorem is called subject reduction theorem. We leave the details for the interested reader.Theorem 7.4.4 Suppose that �; �; � ` e : � is derivable in ML8;�;�0;exc;ref(C). If kek ,!0 ans0 isderivable in ML80;exc;ref , then e ,!d ans is also derivable in ML8;�;�0;exc;ref(C) for some ans such thatkansk = ans0.
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132 CHAPTER 7. EFFECTSProof The proof proceeds by a structural induction on the derivation D0 of kek ,!0 ans0 andthe derivation D of �; �; � ` e : �, lexicographically ordered. We present one case.�; �; � ` e0 : � �; �; � ` ms : Exc) �D = �; �; � ` (handle e0 with ms) : � Then we havekek = khandle e0 with msk = handle ke0k with kmsk:The derivation D0 of kek ,!0 ans0 must be one of the following forms.letref � in ke0k end ,!0 letref M0 in raise(v0) endD0 =letref � in handle ke0k with kmsk end ,!0 letref M0 in raise(v0) end By in-duction hypothesis, letref � in e0 end ,!d letref M in raise(v) end is derivable forsome M and v such that kMk =M0 and kvk = v0. This leads to the following.letref � in e0 end ,!d letref M in raise(v) endletref � in handle e0 with ms end ,!d letref M in raise(v) end (ev-handle-1)Hence, we are done.letref � in ke0k end ,!0 letref M0 in raise(v0) endmatch(v0; kpkk) =) �0 for some 1 � k � nletref M0 in kekk[�0] end ,!0 ans0D0 =letref � in handle ke0k with (p1 ) e1 j � � � j pn ) en) end ,!0 ans0 By induc-tion hypothesis, letref � in e0 end ,!d letref M in raise(v) end is derivable for someM and v such that kMk =M0 and kvk = v0. By Theorem 7.4.2, �; �; � ` v : � is derivable.By Proposition 6.2.1, match(v; pk) =) � is derivable for some � such that k�k = �0, andtherefore, kek[�]k = kekk[�0]. By induction hypothesis, letref M in ek[�] end ,!d ansfor some ans such that kansk = ans0. This leads to the following.letref � in e0 end ,!d letref M in raise(v) endmatch(v; pk) =) � for some 1 � k � nletref M in ek[�] end ,!d ansletref � in handle e0 with (p1 ) e1 j � � � j pn ) en) end ,!d ans (ev-handle-2)This concludes the subcase.letref � in ke0k end ,!0 letref M0 in v0 endD0 =letref � in handle ke0k with kmsk end ,!0 letref M0 in v0 end By inductionhypothesis, letref � in e0 end ,!d letref M in v end is derivable for some M and vsuch that kMk =M0 and kvk = v0. This leads to the following.letref � in e0 end ,!0 letref M in v endletref � in handle e0 with ms end ,!0 letref M in v end (ev-handle-3)Hence, we are done.
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7.5. ELABORATION 133All other cases can be treated similarly.We have thus extended the entire core of ML with dependent types. Given the comprehensivefeatures of the core of ML, this really is a solid justi�cation on the feasibility of our approach tomaking dependent types available in practical programming. Naturally, the next move is to enrichthe module system of ML with dependent types, which we regard as a primary future researchtopic.7.5 ElaborationWe brie
y explain how elaboration for ML8;�;�0;exc;ref(C) is performed. We concentrate on the newlyintroduced language constructs rather than present all the elaboration rules as done for ML�;�0 (C),which is simply too overwhelming in this case. We also ignore type variables since polymorphismis large orthogonal to dependent types as explained in Chapter 6.The elaboration rules for references and exception mechanism are listed in Figure 7.8. We omitthe formulation of the corresponding constraint generation rules. Also it is a routine to formulateand prove a similar version of Theorem 5.2.6 for ML8;�;�0;exc;ref(C), which justi�es the correctness ofthese elaboration rules. We leave out details since we have adequately presented in the previouschapters the techniques needed for ful�lling such a task.7.6 SummaryIn this chapter we studied the interactions between dependent types and e�ects such as referencesand exception mechanism. Like polymorphism, dependent types cannot be combined with e�ectsdirectly for the type system would be unsound otherwise. A clean solution to this problem is toadopt value restriction on formulating expressions of dependent function types. The developmentseems to be straightforward after this adoption. However, this problem also exhibits anotherinadequate aspect of the type system of ML for it cannot distinguish the functions which havee�ects from those which do not. It will be interesting to see how this can be remedied in futureresearch.The type system of ML8;�;�0;exc;ref(C), which includes let-polymorphism, e�ects and dependenttypes, has reached the stage where it is di�cult to manipulate without mechanical assistance. Forinstance, we presented only one case in the proof of Theorem 7.4.4, and left out dozens. Sincealmost all the proofs in this thesis are based on some sort of structural induction, it seems highlyrelevant to investigate whether an interactive theorem prover with certain automation features canaccomplish the task of ful�lling the cases that we omitted. The interested reader can �nd somerelated research in (Sch�umann and Pfenning 1998).
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134 CHAPTER 7. EFFECTS

� ` � : � �; � ` e # Exc) e��; � ` raise(e) # � ) raise(e�) (elab-raise)�; � ` e " � ) e� �; � ` ms # (Exc) �)) ms��; � ` (handle e with ms) " � ) (handle e� with ms�) (elab-handle-up)�; � ` e # � ) e� �; � ` ms # (Exc) �)) ms��; � ` (handle e with ms) # � ) (handle e� with ms�) (elab-handle-down)�; � ` e " � ) e��; � ` Ref(e) " � ref ) Ref (e�) (elab-ref-up)�; � ` e # � ) e��; � ` Ref(e) # � ref ) Ref(e�) (elab-ref-down)�; � ` e " � ref ) e��; � `!e " � )!e� (elab-deref-up)�; � ` e # � ref ) e��; � `!e # � )!e� (elab-deref-down)�; � ` e1 " � ref ) e�1 �; � ` e2 # � ) e�2�; � ` e1 := e2 " 1) e�1 := e�2 (elab-assign-up)�; � ` e1 " � ref ) e�1 �; � ` e2 # � ) e�2�; � ` e1 := e2 # 1) e�1 := e�2 (elab-assign-down)Figure 7.8: Some elaboration rules for references and exception mechanism
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Chapter 8ImplementationWe have �nished a prototype implementation of dependent type inference in Standard ML of NewJersey, version 110. The implementation corresponds closely to the theory developed in the previouschapters. All the examples presented in Appendix A have been veri�ed in this implementation.In this chapter, we account for some decisions we made during this implementation. However,this chapter is not meant to be complete instructions for using the prototype implementation. Thesyntax for the expressions recognized by the implementation is similar to that of the external lan-guage DML(C) for ML8;�;�0;exc;ref(C), including let-polymorphism, references, exception mechanism,universal and existential dependent types. The record types, which can be regarded as a sugaredversion of product types, are not available at this moment. Most of the features can be found inthe examples presented in Appendix A.The grammar for a sugared version of DML(C) closely resembles that of Standard ML in thesense that a DML(C) program becomes an SML one if all syntax related to type index objects iserased. Therefore, we will only brie
y go over the syntax related to dependent types. Also notethat the explanation will be given in an informal way since most of the syntax for DML(C) is likelyto change in future implementations.Lastly, we will move on to mention some issues on implementing the elaboration algorithmpresented in Chapter 5.8.1 Re�nement of Built-in TypesWe have re�ned the built-in types int, bool and 'a array in ML as follows.� int is re�ned into in�nitely many singleton types int(n), where n are of integer values. Inother words, if a value v is of type int(n) for some n, then v is equal to n. As a consequence,int becomes a shorthand for �n : int:int(n).� bool is re�ned into two singleton types bool(b), where b is either > or ?. true and false areassigned types bool(>) and bool(?) respectively. As a consequence, bool is a shorthand for�b : o:bool(b).� 'a arrayis re�ned into in�nitely many dependent types 'a array(n) where n stands for thesize of the array. 135
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136 CHAPTER 8. IMPLEMENTATION+ : �m : int:�n : int:int(m) � int(n)! int(m+ n)� : �m : int:�n : int:int(m) � int(n)! int(m� n)� : �m : int:�n : int:int(m) � int(n)! int(m � n)� : �m : int:�n : int:int(m) � int(n)! int(div(m;n))% : �m : int:�n : int:int(m) � int(n)! int(mod(m;n))< : �m : int:�n : int:int(m) � int(n)! bool(m < n)� : �m : int:�n : int:int(m) � int(n)! bool(m � n)= : �m : int:�n : int:int(m) � int(n)! bool(m = n)> : �m : int:�n : int:int(m) � int(n)! bool(m > n)� : �m : int:�n : int:int(m) � int(n)! bool(m � n)array : ��:�n : nat:� � int(n)! (�)array(n)length : ��:�n : nat:(�)array(n)! int(n)Figure 8.1: Dependent types for some built-in functionsAlso we have assigned dependent types to some built-in functions on integers, booleans and arrays.8.2 Re�nement of DatatypesDuring the development of various dependent type systems in previous chapters, we implicitlyassumed that a declared (polymorphic) datatype constructor � : � ! � � � ! � ! � in ML can bere�ned into a dependent datatype constructor � : � ! � � � ! � ! 
 ! � for some index sort 
, andevery constructor c associated with � of type ��1: � � � :��m:� ! � is then assigned a dependenttype of form ��1 : : :��m:�a1 : 
: : : :�an : 
n:� ! (�1; : : : ; �m)�(a1; : : : ; an);where 
1 � � � � �
n = 
. We now use an example to illustrate how a datatype re�nement declarationis formulated in the implementation.Given the datatype constructor tree as follows,datatype 'a tree = Leaf | Branch of 'a * 'a tree * 'a treethe following is a datatype re�nement declaration for tree.typeref 'a tree of nat withLeaf <| 'a tree(0)| Branch <|{sl:nat, sr:nat} 'a * 'a tree(sl) * 'a tree(sr) -> 'a tree(1+sl+sr)This declaration states that the datatype constructor tree : � ! � has been re�ned into a dependentdatatype constructor tree : � ! nat! �. Also the associated constructors Leaf and Branch have
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8.3. TYPE ANNOTATIONS 137been assigned the following types, respectively.��:(�)tree(0) and ��:�sl : nat:�sr : nat:� � (�)tree(sl) � (�)tree(sr)! (�)tree(1 + sl + sr)Clearly, the meaning of the type index i in (�)tree(i) is the size of the tree. If one would like toindex a tree with its height, then the following declaration su�ces.typeref 'a tree of nat withLeaf <| 'a tree(0)| Branch <|{hl:nat, hr:nat} 'a * 'a tree(sl) * 'a tree(sr) -> 'a tree(1+max(hl, hr))Moreover, if one would like to index a tree with both its size and its height, then the declarationcan be written as follows.typeref 'a tree of nat * nat withLeaf <| 'a tree(0, 0)| Branch <|{{sl:nat, sr:nat, hl:nat, hr:nat}'a * 'a tree(sl, hl) * 'a tree(sr, hr) -> 'a tree(1+sl+sr, 1+max(hl, hr))More sophisticated datatype re�nement declarations can be found in the examples presented inAppendix A. Note that a datatype can be re�ned at most once in the current implementation forthe sake of simplicity.8.3 Type AnnotationsThe constraint generation rules for elaboration presented in Chapter 5 require that the programmersupply adequate type annotations. Roughly speaking, the dependent types of declared functionshould be determined by the programmer rather than synthesized during elaboration. The mainreason for this is that, unlike in ML, there exists no notion of principal types in ML�;�0 (C).The type annotation for a function can be supplied through the use of a where clause followingthe function declaration. Suppose that the following datatype re�nement has been declared.datatype 'a list = nil | cons of 'a * 'a listtyperef 'a list of nat withnil <| 'a list(0)| cons <| {n:nat} 'a * 'a list(n) -> 'a * 'a list(n+1)Then the following function declaration contains a type annotation for the declared functionreverse.fun('a)reverse(nil) = nil| reverse(cons(x, xs)) = reverse(xs) @ cons(x, nil)where reverse <| {n:nat} 'a list(n) -> 'a list(n)
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138 CHAPTER 8. IMPLEMENTATIONThe type annotation states that the reverse is a function of type �n : nat:(�)list(n)! (�)list(n).The above declaration roughly corresponds to the following expression in DML(C).��:�x reverse : �n : nat:(�)list(n)! (�)list(n):�n:lam l:case l of nil) nil j cons(hx; xsi)) reverse(xs)@cons(hx; nili)There is another form of type annotation shown in the following example, which is a slight variantof the example in Figure 1.1.fun('a){n:nat}reverse(l) =let fun rev(nil, ys) = ys| rev(cons(x, xs), ys) = rev(xs, cons(x, ys))where rev <| {m:nat}{n:nat} 'a list(m) * 'a list(n) -> 'a list(m+n)in rev(l, nil) endwhere reverse <| 'a list(n) -> 'a list(n)reverse is now de�ned in the tail-recursive style. Notice that {n:nat} follows fun('a) in thisdeclaration, which corresponds to the following expression in DML(C).��:�n : nat:�x reverse : (�)list(n)! (�)list(n):let rev = �x rev : �m : nat:�n : nat:(�)list(m) � (�)list(n)! (�)list(m+ n):�m:�n:lam l:case l of hnil; ysi ) ysj hcons(hx; xsi); ysi ) rev(hxs; cons(hx; ysi)i)in rev(hl; nili) endAnother kind of type annotation is essentially like the type annotation in ML except that <|is used instead of : and a dependent type is supplied. For instance, the type annotation in thefollowing code, extracted from the example in Section A.5, captures the relation between frontand srcalign.fun{srcalign:int}aligned(src, srcpos, endsrc, dest, destpos, srcalign, bytes) =letval front =(case srcalign of0 => 0| 1 => 3| 2 => 2| 3 => 1) <| [i:nat |(srcalign = 0 /\ i = 0) \/(srcalign = 1 /\ i = 3) \/(srcalign = 2 /\ i = 2) \/(srcalign = 3 /\ i = 1) ] int(i)
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8.4. PROGRAM TRANSFORMATION 139...in ...endWe list as follows some less common syntax in the implementation and its corresponding part inML8;�;�0;exc;ref(C), helping the reader to understand examples.implementation ML8;�;�0;exc;ref(C)e <| � e : �P1 /\ P2 P1 ^ P2P1 \/ P2 P1 _ P2fa1 : 
1; : : : ; an : 
ng 8a1 : 
1 : : : 8an : 
n:fa1 : 
1; : : : ; an : 
n j Pg 8a1 : 
1 : : : 8an : fa : 
n j P [an 7! a]g:[a1 : 
1; : : : ; an : 
n] 9a1 : 
1 : : : 9an : 
n:[a1 : 
1; : : : ; an : 
n j P ] 9a1 : 
1 : : : 9an : fa : 
n j P [an 7! a]g:8.4 Program TransformationThere is a signi�cant issue on whether a variant of A-normal transform should be performed onprograms before they are elaborated. The advantage of doing the transform is that a common formof expressions are then able to be elaborated which would otherwise not be possible. However, thetransform also prevents us from elaborating a less common form of expressions. This drawback,however, can be largely remedied by de�ne e1(e2) as follows.e1(e2) = ( let x1 = e1 in x1(e2) end if e2 is a value;let x1 = e1 in let x2 = e2 in x1(x2) end end otherwise.A more serious disadvantage of performing the transform is that it can signi�cantly complicate forthe programmer the issue of understanding the error messages reported during elaboration sincehe or she may have to understand how the programs are transformed.The transform is performed in the current prototype implementation. Since little attention ispaid to reporting error messages in this implementation, the issue has yet to be addressed in futureimplementations. We would also like to study the feasibility of allowing the programmer to guidethe transform with some syntax.8.5 Indeterminacy in ElaborationThe constraint generation rules for coercion as presented in Figure 5.2 contain a certain amount ofindeterminacy. Since we disallow backtracking in elaboration for the sake of practicality, we haveimposed the following precedence on the application of these rules, that is, the rule with a higherprecedence is chosen over the other if both of them are applicable.(coerce-pi-r) > (coerce-sig-l) > (coerce-pi-l) > (coerce-sig-r)
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140 CHAPTER 8. IMPLEMENTATIONGiven � ` � : � derivable, the above strategy guarantees that � [̀�] coerce(�; �) ) � is derivablefor some � such that � j= � is derivable. However, the programmer must use language constructs toguide coercion, sometimes. For instance, given a function f of type �1 = �a : 
:�(a) ! �(i), one cande�ne g as lam x:let y = x in f(y) end and assign it the type �2 = (�a : 
:�(a)) ! (�a : 
:�(a)).This type-checks. Notice that it could not have succeeded with the precedence above if we hadcoerced �1 into �2 directly.Similarly, the rule (constr-pi-intro-1) is always chosen over (constr-pi-intro-2) if both areapplicable. There is yet another issue. Suppose that we have synthesized the type � of an expressione for � = �a : 
:�1. Clearly, the rule (constr-pi-elim) is applicable now. Should we apply therule? In the implementation, we apply the rule only if e occurs as a subexpression of e(e0) orcase e of ms.This pretty much summarizes how indeterminacy in elaboration is dealt with in the prototypeimplementation.8.6 SummaryWe have �nished a prototype implementation in which there are features such as datatype declara-tions, high-order functions, let-polymorphism, references, exception mechanism, and both universaland existential dependent types. The only missing main feature in the core of ML is records, whichcan be regarded as a variant of product. The implementation sticks tightly to the theory developedin the previous chapters.In the implementation of the elaboration described in Section 5.2, we have to cope with someindeterminacy in the constraint generation rules for elaboration and coercion. The importantdecision we adopt is that we disallow the use of backtracking in type-checking. The main reasonfor this decision is that backtracking can not only signi�cantly slow down type-checking but alsomake it almost impossible to report type-error messages in an acceptable manner. We are nowready to harvest the fruit of our hard labor, mentioning some interesting applications of dependenttypes in the next chapter.
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Chapter 9ApplicationsIn this chapter, we present some concrete examples to demonstrate various applications of depen-dent types in practical programming. All the examples in Section 9.1 and Section 9.2 have beenveri�ed in the prototype implementation. The ones in Section 9.3 are for the future research.9.1 Program Error DetectionIt was our original motivation to use dependent types to capture more programming errors atcompile-time. We report some rather common errors which can be captured with the dependenttype system developed in this thesis. Notice that all these errors slip through the type system ofML.We have found that it is signi�cantly bene�cial for the programmer to be able to verify certainproperties about the lengths of lists in programs. For instance, the following is an implementationof the quicksort algorithm on lists.fun('a)quickSort cmp [] = []| quickSort cmp (x::xs) = par cmp (x, [], [], xs)where quickSort <|{n:nat} ('a * 'a -> bool) -> 'a list(n) -> 'a list(n)and('a)par cmp (x, left, right, xs) =case xs of[] => (quickSort cmp left) @ (x :: (quickSort cmp right))| y::ys =>if cmp(y, x) then par cmp (x, y::left, right, ys)else par cmp (x, left, y::right, ys)where par <| {p:nat,q:nat,r:nat} ('a * 'a -> bool) ->'a * 'a list(p) * 'a list(q) * 'a list(r) -> 'a list(p+q+r+1)If the line below case is replaced with the following,[] => (quickSort cmp left) @ (quickSort cmp right)141
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142 CHAPTER 9. APPLICATIONSdatatype 'a dict =Empty (* considered black *)| Black of 'a entry * 'a dict * 'a dict| Red of 'a entry * 'a dict * 'a dicttyperef 'a dict of bool * nat withEmpty <| 'a dict(true, 0)| Black <|{cl:bool, cr:bool, bh:nat}'a entry * 'a dict(cl, bh) * 'a dict(cr, bh) -> 'a dict(true, bh+1)| Red <|{bh:nat}'a entry * 'a dict(true, bh) * 'a dict(true, bh) -> 'a dict(false, bh)Figure 9.1: The red/black tree data structurethat is, the programmer forgot to include x in the result returned by the function par, then thefunction could not be of the following type.{p:nat,q:nat,r:nat} ('a * 'a -> bool) ->'a * 'a list(p) * 'a list(q) * 'a list(r) -> 'a list(p+q+r+1)As matter of a fact, the function par is of the following type after the replacement.{p:nat,q:nat,r:nat} ('a * 'a -> bool) ->'a * 'a list(p) * 'a list(q) * 'a list(r) -> 'a list(0)Therefore, the above error is caught at compile-time when type-checking is performed.We now present a more realistic example. A red/black tree is a balanced binary tree whichsatis�es the following conditions.1. All leaves are marked black and all other nodes are marked either red or black.2. Given a node in the tree, there are the same number of black nodes on every path connectingthe node to a leaf. This number is called the black height of the node.3. The two sons of every red node are black.In Figure 9.1, we de�ne a polymorphic datatype 'a dict, which is essentially a binary treewith colored nodes. We then re�ne the datatype with type index objects (c; bh) drawn from thesort bool � nat, where c and bh are the color and the black height of the root of the binary tree.The node is black if and only if c is true. Therefore, the properties of a red/black tree is naturallycaptured with this datatype re�nement. This enables the programmer to catch program errorswhich lead to violations of these properties when implementing an insertion or deletion operationon red/black trees. We have indeed encountered errors caught in this way in practice.Notice that this re�nement is di�erent from the one declared in Section A.2, which is moresuited for the implementation presented there.
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9.2. ARRAY BOUND CHECK ELIMINATION 1439.2 Array Bound Check EliminationArray bounds checking refers to determining whether the value of an expression is within thebounds of an array when it is used to index the array. Bounds violations, such as those notorious\o�-by-one" errors, are among the most common programming errors.� Pascal, Ada, SML, Java are among the programming languages which require that all boundsviolations be captured.� C, C++ are not.However, run-time array bounds checking can be very expensive. For instance, it is observedthat FoxNet written in SML (Buhler 1995) su�ers up to 30% loss of throughput due to checksumoperation, which is largely composed of run-time array bound checks. The SPIN kernel written inModula-3 (Bershad, Savage, Pardyak, Sirer, Becker, Fiuczynski, Chambers, and Eggers 1995) alsosu�ers some signi�cant performance losses from run-time array bounds checking. The traditionalad hoc approaches to eliminating run-time array bound checks are based on 
ow analysis (Gupta1994; Kolte and Wolfe 1995). A signi�cant advantage of these approaches is that they can bemade fully automatic, requiring no programmer supplied annotations. On the other hand, theseapproaches in general have very limited power. For instance, they cannot eliminate array boundchecks involved with an array index whose value is not monotonic during the execution. Alsothey all rely on whole program analysis, having some fundamental di�culty crossing over moduleboundaries. Another serious criticism of these approaches is that they in general do not providethe programmer with feedback on why some array bound checks cannot be eliminated (if there arestill some left after the 
ow analysis). In other words, these approaches, though may enhances theperformance of the programs, cannot lead to more robust programs. Therefore, they o�er virtuallyno software engineering bene�ts.In this section, we show that dependent types can facilitate the elimination of run-time arraybound checks. Our approach requires that the programmer supply type annotations in the code.In return, it is much more powerful than traditional approaches. For instance, we will show howto completely eliminate array bound checks in a binary search function, which seems beyond thereach of any practical approach based on 
ow analysis. In addition, our approach can providethe programmer with the feedback on why certain array bound checks cannot be eliminated.This enhances not only the performance of the programs but also their robustness. Therefore,our approach o�ers some software engineering bene�ts. Since our approach is orthogonal to thetraditional ones, it seems straightforward to adopt our approach at type-checking stage and thenuse one based on 
ow analysis at code generation stage, combining the bene�ts of dependent typesand 
ow analysis together.In the standard basis we have re�ned the types of many common functions on integers such asaddition, subtraction, multiplication, division, and the modulo operation. Please refer to Figure 8.1in Chapter 8 for more details.In order to eliminate array bound checks at compile-time, we assume that the array operationssub and update have been assigned the following types.sub <| {n:nat} {i:nat | i < n} 'a array(n) * int(i) -> 'aupdate <| {n:nat} {i:nat | i < n} 'a array(n) * int(i) * 'a -> unit
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144 CHAPTER 9. APPLICATIONSfun{size:nat}dotprod(v1, v2) =let fun loop(i, n, sum) =if i = n then sumelse loop(i+1, n, sum + sub(v1, i) * sub(v2, i))where loop <| {i:nat | i <= size} int(i) * int(size) * int -> intin loop(0, length v1, 0)endwhere dotprod <| int array(size) * int array(size) -> intFigure 9.2: The dot product functionClearly, we are sure that the array accesses through sub or update cannot result in array boundviolations, and therefore there is no need for inserting array bound checks when we compile thecode.Similarly, we can assign nth the following type, where nth, when given a list and a nonnegativeinteger i, returns the ith element in the list.sub <| {n:nat} {i:nat | i < n} 'a list(n) * int(i) -> 'aThis can eliminate list tag checks in the implementation of nth.The code in Figure 9.2 is an implementation of the dot product function. We use fn:natg as anexplicit universal quanti�er or dependent function type constructor. Conditions may be attached,so they can be used to describe certain forms of subset types, such as fn:nat | i < ng in the typesof sub and update. The two \where" clauses are present in the code for type-checking purposes,giving the dependent type of the local tail-recursive function loop and the function dotprod itself.This could be a simple example for some approaches based on 
ow analysis since the index iin the code is always increasing. Now let us see an example which is challenging for approachesbased on 
ow analysis. The code in Figure 1.3 is an implementation of binary search on an array.We have listed in Figure 3.4 some sample constraints generated from type-checking the code. Allof these can be solved easily.Note that if we program binary search in C, the array bound check cannot be hoisted out ofloops using the algorithm presented in (Gupta 1994) since it is neither increasing nor decreasing interms of the de�nition given there. On the other hand, the method in (Susuki and Ishihata 1977)could eliminate this array bound check by synthesizing an induction hypothesis similar to ourannotated type for look. Unfortunately, synthesizing induction hypotheses is often prohibitivelyexpensive in practice. In future work we plan to investigate extensions of the type-checker whichcould infer certain classes of generalizations, thereby relieving the programmer from the need forcertain kinds of \obvious" annotations.9.2.1 ExperimentsWe have performed some experiments on a small set of programs. Note that three of them (bcopy,binary search, and quicksort) were written by others and just annotated, providing evidence that
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9.2. ARRAY BOUND CHECK ELIMINATION 145constraints type annotationsProgram number SML of NJ MLWorks total number total lines code sizebcopy 187 0.59/1.17 0.72/1.37 13 50 281 linesbinary search 13 0.07/0.02 0.10/0.04 2 2 33 linesbubble sort 15 0.08/0.03 0.11/0.06 3 3 37 linesmatrix mult 18 0.10/0.04 0.16/0.06 5 10 50 linesqueen 18 0.11/0.03 0.14/0.04 9 9 81 linesquick sort 135 0.29/0.58 0.37/0.68 16 40 200 lineshanoi towers 29 0.10/0.09 0.13/0.13 4 10 45 lineslist access 4 0.07/0.01 0.08/0.01 2 3 18 linesTable 9.1: Constraint generation/solution, time in secsa natural ML programming style is amenable to our type re�nements.The �rst set of experiments were done on a Dec Alpha 3000/600 using SML of New Jerseyversion 109.32. The second set of experiments were done on a Sun Sparc 20 using MLWorksversion 1.0. Sources of the programs can be found in (Xi 1997).Table 9.1 summarizes some characteristics of the programs. We show that the number ofconstraints generated during type-checking and the time taken for generating and solving themusing SML of New Jersey and MLWorks. Also we indicate the number of total type annotationsin the code, the number of lines they occupy, and the code size. Note that some of the typeannotations are already present in non-dependent form in ML, depending on programming styleand module interface to the code. A brief description of the programs is given below.bcopy This is an optimized implementation of the byte copy function used in the Fox project.We used this function to copy 1M bytes of data 10 times in a byte-by-byte style.binary search This is the usual binary search function on an integer array. We used this functionto look for 220 randomly generated numbers in a randomly generated array of size 220.bubble sort This is the usual bubble sort function on an integer array. We used this function tosort a randomly generated array of size 213.matrix mult This is a direct implementation of the matrix multiplication function on two-dimensionalinteger arrays. We applied this function to two randomly generated arrays of size 256� 256.queen This is a variant of the well-known eight queens problem which requires positioning eightqueens on a 8� 8 chessboard without one being captured by another. We used a chessboardof size 12� 12 in our experiment.quick sort This implementation of the quick sort algorithm on arrays is copied from the SML ofNew Jersey library. We sorted a randomly generated integer array of size 220.hanoi towers This is a variant of the original problem which requires moving 64 disks from onepole to another without stacking a larger disk onto a smaller one given the availability of athird pole. We used 24 disks in our experiments.
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146 CHAPTER 9. APPLICATIONSProgram with checks without checks gain checks eliminatedbcopy 6.52 4.40 32% 20,971,520binary search 40.40 30.10 25% 19,072,212bubble sort 58.90 34.25 42% 134,429,940matrix mult 30.62 16.79 45% 33,619,968queen 15.85 11.06 30% 77,392,496quick sort 29.85 25.32 15% 64,167,588hanoi towers 11.34 8.28 27% 50,331,669list access 2.24 1.24 45% 1,048,576Table 9.2: Dec Alpha 3000/600 using SML of NJ working version 109.32, time unit = sec.Program with checks without checks gain checks eliminatedbcopy 9.75 2.01 79% 20,971,520binary search 31.78 25.00 21% 19,074,429bubble sort 46.78 25.84 45% 134,654,868matrix mult 60.43 51.27 15% 33,619,968queen 29.81 14.81 50% 77,392,496quick sort 79.95 70.28 12% 63,035,841hanoi towers 9.59 7.20 25% 50,331,669list access 1.58 0.77 51% 1,048,576Table 9.3: Sun Sparc 20 using MLWorks version 1.0, time unit = sec.list access We accessed the �rst sixteen elements in a randomly generated list at total of 220times.We used the standard, safe versions of sub and update for array access when compiling the pro-grams into the code with array bound checks. These versions always perform run-time array boundchecks according to the semantics of Standard ML. We used unsafe versions of sub and update forarray access when generating the code containing no array bound checks. These functions can befound in the structure Unsafe.Array (in SML of New Jersey), and in MLWorks.Internal.Value (inMLWorks). Our unsafe version of the nth function used cast for list access without tag checking.Notice that unsafe versions of sub, update and nth can be used in our implementation only ifthey are assigned the corresponding types mentioned previously.In Table 9.2 and Table 9.3, we present the e�ects of eliminating array bound checks and list tagchecks. Note that the di�erence between the number of eliminated array bound checks in Table 9.2and Table 9.3 re
ects the di�erence between randomly generated arrays used in two experiments.We also present two diagrams in Figure 9.3 and Figure 9.4. The height of a bar stands for thetime spent on the experiment. The gray ones are for the experiments in which all array boundchecks are eliminated at compile-time and the dark ones for the others.It is clear that the gain is signi�cant in all cases, rewarding the work of writing type annotations.In addition, type annotations can be very helpful for �nding and �xing certain program errors, and
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9.3. POTENTIAL APPLICATIONS 147

bcopy
binarysearch bubble sort

matrixmult queen quicksort hanoitowers listaccesslight color: w/o run-time bounds checking dark color: w/ run-time bounds checkingFigure 9.3: Dec Alpha 3000/600 using SML of NJ working version 109.32for maintaining a software system since they provide the user with informative documentation. Wefeel that these factors yield a strong justi�cation for our approach.9.3 Potential ApplicationsIn this section we present some potential applications of dependent types, which have yet to beimplemented. We also outline some approaches to realizing these applications. We refer the readerto (Xi 1999) for further details regarding the subject on dead code elimination.9.3.1 Dead Code EliminationThe following function zip zips two lists together. If the clause zip(_, _) = raise zipExceptionis missing, then some ML compiler will issue a warning message stating that zip may result in amatch exception to be raised. For instance, this happens if two arguments of zip are of di�erentlengths.exception zipExceptionfun('a, 'b)zip(nil, nil) = nil| zip(cons(x, xs), cons(y, ys)) = cons((x,y), zip(xs, ys))| zip(_, _) = raise zipExceptionHowever, this function is meant to zip two lists of equal length. If we declare that zip is of thefollowing dependent type,{n:nat} 'a list(n) * 'b list(n) -> ('a * b') list(n)
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148 CHAPTER 9. APPLICATIONS

bcopy
binarysearch bubblesort matrixmult

queen

quicksort

hanoitowers listaccesslight color: w/o run-time bounds checking dark color: w/ run-time bounds checkingFigure 9.4: Sun Sparc 20 using MLWorks version 1.0then the clause zip(_, _) = raise zipException in the de�nition of zip can never be reached,and therefore can be safely removed. In other words, we can declare the function zip as follows.fun('a, 'b)zip(nil, nil) = nil| zip(cons(x, xs), cons(y, ys)) = cons((x,y), zip(xs, ys))where {n:nat} 'a list(n) * 'b list(n) -> ('a * b') list(n)This leads to not only more compact but also possibly more e�cient code. For instance, if ithas been checked that the �rst argument of zip is nil, then it can return the result nil immediatelysince it is redundant to check whether the second argument is nil (it must be).We now prove a lemma, which provides the key to eliminating redundant matching clauses.Lemma 9.3.1 Given a pattern p and a type � in ML�;�0 (C) such that p # � � (�; �) is derivable.If �; � ` v : � and match(v; p) ` � are derivable, then � j= ? is not satis�able. In other words, if� j= ? is derivable, then there is no closed value of type � which can match the pattern p.Proof If � j= ? is satis�able, then (�)? holds in the constraint domain C. It can be readilyveri�ed that a counterexample to (�)? can be given if we let a be �(a) for all a 2 dom(�). If� j= ? is derivable, then � j= ? is satis�able by de�nition. Therefore, there is no closed value v oftype � which matches the pattern p if � j= ? is derivable.
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9.3. POTENTIAL APPLICATIONS 149Let us call an index variable context � inconsistent if � j= ? is satis�able. Lemma 9.3.1 simplyimplies that no closed value of type � can match a pattern p if checking p against � yields aninconsistent index variable context.Therefore, when the following rule is applied during elaboration,p # �1 ) (p�;�1; �1) �; � 1 ; �;�1 ` e # �2 )[ ] ��;  ` �1 ) �2 : � �;  ` �[ctx]�; � ` (p) e) # (�1 ) �2))[ ] 8(� 1 ):� (constr-match)we verify whether �; � 1 j= ? is derivable. If it is, then the matching clause p ) e can never bereached. We can either issue a warning message at this point or safely remove the matching clause.However, there is a serious issue which must be dealt with before we can apply this strategy topattern matching in ML. The operational semantics of ML requires that pattern matching be donesequentially. For instance, if the third clause zip( ; ) in the �rst declaration of zip is chosen to eval-uate zip(v), then v must not match either pattern (nil; nil) or (cons(x; xs); cons(y; ys)). Therefore,v matches either pattern (cons(x; xs); nil) or (nil; cons(y; ys)). If v is of type (�)list(n)�(�)list(n)for some n, this is clearly impossible. This example suggests that we transform overlapped match-ing clauses into disjoint ones before detecting whether some of them are redundant. In the abovecase, this amounts to transforming the �rst declaration of zip into the following one.exception zipExceptionfun('a, 'b)zip(nil, nil) = nil| zip(cons(x, xs), cons(y, ys)) = cons((x,y), zip(xs, ys))| zip(nil, cons(y, ys)) = raise zipException| zip(cons(x, xs), nil) = raise zipExceptionLet us assign zip the type ��:��:�n : nat:(�)list(n) � (�)list(n)! (� � �)list(n). Notice that wehave(nil; cons(y; ys)) # (�)list(n) � (�)list(n)� (0 := n; a : nat; a+ 1 := n; y : �; ys : (�)list(a))Since n : nat; 0 := n; a : nat; a + 1 := n j= ? is derivable, the third clause is redundant byLemma 9.3.1. Similarly, the fourth clause is also unreachable.This approach seems to be straightforward, but it can lead to code size explosion when appliedto certain examples. Therefore, we are still in search of a better solution to detecting unreachablematching clauses.9.3.2 Loop UnrollingIn this subsection we present another potential application of dependent types, following some ob-servation in Subsection 9.3.1. The following declared function sumArray sums up all the elementsin a given integer array.fun{n:nat}sumArray(arr) =let
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150 CHAPTER 9. APPLICATIONSfun loop(i, n, s) = if i = n then s else loop(i+1, n, sub(arr, i)+s)where loop <| {i:nat | i <= n} int(i) * int(n) * int -> intin loop(0, length(arr), 0)endwhere sumArray <| int array(n) -> intNote that if i = n then s else loop(i+1, n, sub(arr, i)+s) is a variant of the followingcase statement.case i = n of true => s | false => loop(i+1, n, sub(arr, i)+s)We now declare another function sumArray8 as follows, that is, sumArray8 can only be appliedto an integer array of size 8.fun sumArray8(arr) = sumArray(arr)where sumArray <| int array(8) -> intThen it seems reasonable that we can expand the declaration to the following through partialevaluation. We give some informal explanation.fun sumArray8(arr) =sub(arr, 7) + (sub(arr, 6) + (sub(arr, 5) + (sub(arr, 4)(sub(arr, 3) + (sub(arr, 2) + (sub(arr, 1) + (sub(arr, 0) + 0)))))))where sumArray <| int array(8) -> intIf arr is of type (int)array(8), then length(arr) is of type int(8) since length is given thetype ��:�n : nat:(�)array(n) ! int(n). After expanding loop(0; length(arr); 0) to let n =length(arr) in loop(0; n; 0) end (this is a call-by-value language!), the type of n must be int(8).We now expand loop(0; n; 0) tocase 0 = n of true) 0 j false) loop(0 + 1; n; sub(arr; 0) + 0)Notice that the type of 0 = n is bool(0 = 8) since = is of the following type.�m : int:�n : int:int(m) � int(n)! bool(m = n)Therefore, according to the reasoning in Section 9.3.1, the matching clause true) 0 is unreachable.This allows the simpli�cation of the above case statement to loop(0 + 1; n; sub(arr; 0) + 0). Byrepeating this process eight times, we reach the expanded declaration of sumArray8. This canlead to more e�cient code without sacri�cing clarity.However, if the size of an integer array arr is a large natural number, it may not be advantageousto expand sumArray(arr) since this can result in unexpected instruction cache behavior and thusslow down the code execution. We propose a possible solution as follows.A signi�cant problem with currently available programming languages is that there exist fewapproaches to improving the e�ciency of code without overhauling the entire code. With the helpof partial evaluation, this situation can be somewhat ameliorated as follows. We assume that theprogrammer decides to write the function sumArray_unroll in Figure 9.5 to replace sumArrayfor the sake of e�ciency. Though much more involved than the example about sumArray8, weexpect that loop_8_times can specialize to the following function with partial evaluation.
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9.3. POTENTIAL APPLICATIONS 151fun{n:nat}sumArray_unroll(arr) =letfun loop(i, n, s) = if i = n then s else loop(i+1, n, sub(arr, i)+s)where loop <| {i:nat | i <= n} int(i) * int(n) -> intfun loop_8_times(i, n, s) = loop(i, n, s)where loop_8_times <|{i:nat | i <= n /\ n mod 8 = 0} int(i) * int(n) -> intin letval n = length(arr)and r = n % 8in loop(n-r, r, loop_8_times(0, n-r, 0))endendwhere sumArray_unroll <| int array(n) -> intFigure 9.5: loop unrolling for sumArrayfun loop_8_times(i, n, s) =if i = n then selse loop_8_times(i+8, n,sub(arr, i+7)+(sub(arr, i+6)+(sub(arr, i+5)+(sub(arr, i+4)+(sub(arr, i+3)+(sub(arr, i+2)+(sub(arr, i+1)+s)))))))where loop_8_times <| {i:nat | i <= n /\ n mod 8 = 0} int(i) * int(n) -> intThis roughly corresponds to loop-unrolling, a well-known technique in compiler optimization.Though we have not shown that loop unrolling done above preserve the operational semantics,we think that this is a straightforward matter. Now it seems reasonable to gain some performanceby expanding sumArray_unroll(arr) for arr of large known size. The interested reader is referredto (Draves 1997) for some realistic and interesting examples which may be handled in this way.Combining dependent types with partial evaluation, we hope to �nd an approach to improvingthe e�ciency of existing code with only moderate amount of modi�cation. This is currently anexciting but highly speculative research direction.9.3.3 Dependently Typed Assembly LanguageThe studies on the use of types in compilation have been highly active recently. For instance, thework in (Morrisett 1995; Tarditi, Morrisett, Cheng, Stone, Harper, and Lee 1996; Tolmach andOliva 1998; Morrisett, Walker, Crary, and Glew 1998) has demonstrated convincing evidence tosupport the use of typed intermediate and assembly languages for various purposes such as data
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152 CHAPTER 9. APPLICATIONSint dotprod(int A[], int B[], int n) {int i, sum;sum = 0;for(i = 0; i < n; i++) { sum += A[i] * B[i]; }return sum;} Figure 9.6: The C version of dotprod functionlayout, tag-free garbage collection, compiler error detection, etc. This immediately indicates thatit would be bene�cial if we could pass dependent types to lower level languages during compilation.Many compiler optimizations involving code motion may then bene�t from the use of dependenttypes. Array bound check elimination through dependent types in Section 9.2 is a solid support ofthis argument.We have started to formulate a dependently typed assembly language, which is mainly inspiredby (Morrisett, Walker, Crary, and Glew 1998). The theory of this language is yet to be developed.We now use an example to informally present some ideas behind this research. The following codein Figure 9.6 is an implementation of dot product function in C. It is written in this way sothat it can be directly compared with the code in Figure 9.7, which is an implementation of dotproduct function in DTAL, a dependently typed assembly language. Note that \\\" starts a lineof comment.In DTAL, each label is associated with a type. For instance, the label dotprod is associatedwith the following type.{n: nat} [r0: int array(n), r1: int array(n), r3: int(n)]Roughly speaking, this type means that when the execution of the code reaches the label dotprod,the registers r0 and r1 must point to integer arrays of size n for some natural number n and r3stores an integer equal to n.The DTAL code has been type-checked in a prototype implementation. Notice that the typesystem guarantees that there is no memory violation when the command load r4, r0(r2) isexecuted since the value in r2 is a natural number less than the size of the array to which r0points. Therefore, if the code is downloaded from an untrusted source and type-checked locally,no run-time checks are needed for preventing possible memory violations. This opens an excitingavenue to eliminating array bound checks for programming languages such as Java, which run onnetworks. More examples of DTAL code can be found in (Xi 1998).9.4 SummaryWe have so far presented some applications of dependent types. The uses of dependent types inprogram error detection and array bound check elimination have been put into practice. Thoughit seems relatively straightforward to use dependent types for eliminating unreachable matchingclauses or issuing more accurate warning messages about inexhausitive pattern matching, but thisis yet to be implemented. Also we have speculated that it could be bene�cial to combine partial
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9.4. SUMMARY 153
dotprod:{n: nat} \\ n is universally quantified[r0: int array(n), r1: int array(n), r3: int(n)]\\ r0 and r1 point to integer arrays A and B of size n, respectively\\ and n is stored in r3mov r31, 0 \\ set r31 to 0mov r2, 0 \\ set r2 tojmp loop \\ start the looploop: {n:nat, i:int | 0 <= i <= n}\\ n and i are universally quantified and 0 <= i <= n[r0: int array(n), r1: int array(n), r2:int(i), r3: int(n), r31: int]\\ r2 = i and r3 = ncmp r2, r3 \\ compare r2 and r3ifnz \\ r2 is not equal to r3load r4, r0(r2) \\ load A[i] into r4load r5, r1(r2) \\ load B[i] into r5mul r4, r4, r5 \\ r4 = r4 * r5add r31, r31, r4 \\ r31 = r31 + r4add r2, r2, 1 \\ increase r2 by 1jmp loop \\ repeat the loopelse \\ r2 is equal to njmp finish \\ doneendiffinish: [r31: int] \\ r31 stores the result, which is an integerhalt Figure 9.7: The DTAL version of dotprod function
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154 CHAPTER 9. APPLICATIONSevaluation with dependent types, demonstrating informally that loop-unrolling may be controlledby the programmer with dependent types.It is both promising and highly desirable to spot more concrete opportunities in compileroptimization which could bene�t from dependent types.
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Chapter 10Conclusion and Future WorkThe dependent type inference developed in this thesis has demonstrated convincing signs of beinga viable system for practical use. Compared to ML-types, dependent types can more accuratelycapture program invariants and therefore lead to detecting more program errors at compile-time.Also, the use of dependent types in array bound check elimination is encouraging since this canenhance not only the robustness but also the e�ciency of programs.As with any programming language, DML has many weak points. Some of the weak pointsresult from the trade-o�s made to ensure the practicality of dependent type inference, and some canbe remedied through further experiment and research. In this chapter we summarize the currentresearch status on incorporating dependent types into ML and point out some directions to pursuein the future to make DML a better programming language.10.1 Current StatusWe brie
y mention the current status of DML in terms of both language design and languageimplementation.10.1.1 Language DesignWe have so far �nished extending the core of ML with a notion of dependent types, that is,combining dependent types with language features such as datatype declarations, higher-orderfunctions, let-polymorphism, references and exception mechanism. The extended language is giventhe name DML (for Dependent ML). Strictly speaking, DML is really a language parameterizedover a given constraint domain C and thus should be denoted by DML(C). We may omit writingthe constraint domain C in the following presentation, and if we do so then we mean that theomitted C is the integer constraint domain presented in Section 3.3, or C is simply irrelevant.We have proven the soundness of the enriched type system and then constructed a practicaltype-checking algorithm for it. Furthermore, the correctness of the type-checking algorithm is alsoestablished. This has placed our work on a solid theoretical foundation.DML is a conservative extension of ML in the sense that a DML program which uses nodependent types is simply a valid ML program. In order to make DML fully compatible with thecore of ML, we designed a two-phase type-checking algorithm for DML. This guarantees that anML program (written in some external language for ML) can always pass type-checking for DML155
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156 CHAPTER 10. CONCLUSION AND FUTURE WORKif it passes the type-checking for ML. Therefore, the programmer can use sparingly the featuresrelated to dependent types when writing (large) programs.10.1.2 Language ImplementationWe have �nished a prototype implementation of a type-checker for a substantial part of DML(C),where C is the integer constraint domain in Section 3.3. This part roughly corresponds to the lan-guage ML8;�;�0;exc;ref(C) introduced in Section 7.4, including most features in the core of ML such ashigher-order functions, datatypes, let-polymorphism, references and exception mechanism. How-ever, records have yet to be implemented. It should be straightforward to include records in afuture implementation since they are simply a variant of products. All examples in Chapter Ahave been veri�ed in this implementation.The constraint solver for the integer domain is based on a variant of the Fourier-Motzkinvariable elimination approach (Dantzig and Eaves 1973). This is an intuitive and clean approach,which we think is more promising than those based on SUP-INF or the simplex method to reportcomprehensible and accurate type error or warning messages on unsatis�able constraints, a vitalcomponent for type-checking in DML(C). The weak aspect of this approach is that it seems lesspromising to handle large contraints than the Simplex method, but this issue needs to be furtherinvestigated.10.2 Future Research in Language DesignIn this section, we present some future research directions for improving DML.10.2.1 ModulesSince we have �nished adding dependent types to the core of ML, namely, ML without modulelevel constructs, the next move is naturally to study the interaction between the module systemof ML and dependent types. There are many intricate issues which can only be answered inpractice. An immediate question is how to export dependent types in signature. Since there isno notion of principal types in DML, a function can be assigned two dependent types neither ofwhich coerces into the other. For instance, the following declared function tail can be assignedtypes 8�:(�n : nat:(�)list(n))! �n : nat:(�)list(n) and 8�:�n : nat:(�)list(n+ 1)! (�)list(n),respectively.fun tail(cons(x, xs)) = xThe second type cannot be coerced into the �rst one since a function of the �rst type can be appliedto any list while a function of the second type can only be applied to a non-empty list. If the lengthof a list l cannot be inferred from static type-checking, then only the �rst assigned type can beused if we need to type-check tail(l). However, if l is inferred to be not empty at compile-time,the use of the second type can lead to potentially more e�cient code as explained in Section 9.3.1.At this moment, we contemplate introducing a notion of top-level conjunction types into DML. Inthe above case, we would like to assign tail the following conjunction types(8�:(�n : nat:(�)list(n))! �n : nat:(�)list(n)) ^ (8�:�n : nat:(�)list(n+ 1)! (�)list(n))
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10.2. FUTURE RESEARCH IN LANGUAGE DESIGN 157Then the programmer is allowed to choose which type is needed for an occurrence of tail. Thereare yet many details to be �lled in and some experience to be gained on this issue.10.2.2 Combination of Di�erent Re�nementsWe currently require that a datatype be re�ned at most once. However, there are also cases wherea datatype may need di�erent re�nements for di�erent purposes. For instance, we encountereda case where we needed to re�ne the datatype ((�)list)list with a pair of index objects (i; j) torepresent the length of a list of lists and the sum of the lengths of the lists in this list of lists. Itis not clear how this re�nement could be done since the datatype (�)list has already been re�nedwith an index which stands for the length of a list. Instead, we declared the following datatype,re�ned it and then substituted it for ((�)list)list.datatype 'a listlist = Nil | Cons of 'a list * 'a listlisttyperef 'a listlist of nat * natwith Nil <| 'a listlist(0,0)| Cons <| {l:nat,m:nat,n:nat}'a list(l) * 'a listlist(m,n) -> 'a listlist(m+1,n+l)This resulted in substituting Nil and Cons for nil and cons in many places of a program, respec-tively. More details can be found in the example on merge sort presented in Section A.4. It is afuture research topic to study how to combine several di�erent re�nements of a datatype.10.2.3 Constraint DomainsThe general constraint language in Section 3.1 allows the programmer to declare the constraintdomain C over which the language DML(C) is parameterized. Then, by Theorem 5.2.7, the type-checking in DML(C) can be reduced to constraint satisfaction in C. Unfortunately, there is nomethod available to enable the programmer to supply a constraint solver for C.Therefore, it is highly desirable to provide the programmer with a language in which a constraintsolver can be written. A programmer-supplied constraint solver for constraint domain C can thenbe combined with elaboration so that type-checking for DML(C) can be performed.10.2.4 Other Programming LanguagesAnother research direction is to apply the language design approach in this thesis to other (stronglytyped) programming languages such as Haskell(Hudak, Peyton Jones, and Wadler 1992) andJava(Sun Microsystems 1995). Array bound check elimination in Java, however, requires somespecial care, as we explain now. A program in Java is often compiled into Java Virtual MachineLanguage (JVML) code and shipped through networks. Since JVML code can be downloaded by alocal host which does not trust the source of the code, there must be some evidence attached to thecode in order to convince the local host that it is safe to eliminate array bound checks in the code.An approach presented in (Necula 1997) is to make the code carry a proof of certain properties ofthe code which can be veri�ed by the local host, leading to the notion of proof-carrying code. Inpractice, the proof carried by code may tend to be di�cult to construct and large when comparedto the size of the code. Another approach, following (Morrisett, Walker, Crary, and Glew 1998),is to make the compiled code explicitly typed with dependent types so that code properties can
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158 CHAPTER 10. CONCLUSION AND FUTURE WORKbe veri�ed by the local host equipped with a type-checker for dependent types. This leads to thenotion of dependently typed assembly language.10.2.5 Denotational SemanticsWe are also interested in constructing a categorical model for the language ML�;�0 (C). Variousdenotational models based on the notion of locally closed cartesian categories have already beenconstructed for �-calculi with fully dependent type systems such as the one which underlies LF(Harper, Honsell, and Plotkin 1993). However, ML�;�0 (C) is essentially di�erent from these �-calculi because of the separation between type index objects and language expressions. We expectthat a model tailored for ML�;�0 (C) would yield some semantic explanation on index erasure, whichsimply cannot exist in a fully dependent type setting.10.3 Future ImplementationsThe present prototype implementation exhibits many aspects for immediate improvement. Forinstance, we have observed that a large percentage of the constraints can be solved immediatelyafter their generation. However, we currently collect all constraints generated during elaborationin a constraint store before we call a constraint solver. This practice often leads to in
ating thenumber of constraints signi�cantly at the stage where all constraints are transformed into somestandard form. Therefore, it seems promising that elaboration can be done much more e�cientlyif we intertwine constraint generation with constraint solution.Another observation is that an overwhelming majority of integer constraints generated duringelaboration are trivial and can be solved with a constraint solver which is highly e�cient butincomplete, such as a constraint solver based the simplex method for real numbers. After �lteringout the trivial constraints, we can then use a complete constraint solver such as the one mentionedin (Pugh and Wonnacott 1992) to solve the rest of constraints. A similar strategy has been adoptedin the constraint logic programming community for e�ciently solving constraints.A certifying compiler for Safe C, a programming language with similar constructs to part of C,is presented in (Necula and Lee 1998). At this stage, the compiler largely relies on synthesizing loopinvariants in code in order to verify certain properties such as memory integrity. This approach,however, seems di�cult to cope with large programs. On the other hand, the type system of DMLis strong enough for allowing the programmer to supply loop invariants through type annotations.This gives DML a signi�cant advantage when the scalability issue is concerned. Therefore, it isnatural to consider whether a certifying compiler for DML can be implemented in the future.
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Appendix ADML Code ExamplesA.1 Knuth-Morris-Pratt String MatchingThe following is an implementation of the Knuth-Morris-Pratt string matching algorithm usingdependent types to eliminate most array bound checks.structure KMP =structassert length <| {n:nat} 'a array(n) -> int(n)and sub <| (* sub requires NO bound checking *){size:int, i:int | 0 <= i < size} 'a array(size) * int(i) -> 'aand subCK <| (* subCK requires bound checking *)'a array * int -> 'a(* notice the use of existential types *)type intPrefix = [i:int| 0 <= i+1] int(i)assert arrayPrefix <|{size:nat} int(size) * intPrefix -> intPrefix array(size)and subPrefix <| (* subPrefix requires NO bound checking *){size:int, i:int | 0 <= i < size}intPrefix array(size) * int(i) -> intPrefixand subPrefixCK <| (* subPrefixCK requires bound checking *)intPrefix array * int -> intPrefixand updatePrefix <| (* updatePrefix requires NO bound checking *){size:int, i:int | 0 <= i < size}intPrefix array(size) * int(i) * intPrefix -> unit159
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160 APPENDIX A. DML CODE EXAMPLES(** computePrefixFunction generates the prefix function* table for the pattern pat*)fun computePrefixFunction(pat) =letval plen = length(pat)val prefixArray = arrayPrefix(plen, ~1)fun loop(i, j) = (* calculate the prefix array *)if (j >= plen) then ()elseif sub(pat, j) <> subCK(pat, i+1) thenif (i >= 0) then loop(subPrefixCK(prefixArray, i), j)else loop(~1, j+1)else (updatePrefix(prefixArray, j, i+1);loop(subPrefix(prefixArray, j), j+1))where loop <| {j:nat} intPrefix * int(j) -> unitin (loop(~1, 1); prefixArray)endwhere computePrefixFunction <| {p:nat} int array(p) -> intPrefix array(p)fun kmpMatch(str, pat) =letval strLen = length(str)and patLen = length(pat)val prefixArray = computePrefixFunction(pat)fun loop(s, p) =if s < strLen thenif p < patLen thenif sub(str, s) = sub(pat, p) then loop(s+1, p+1)elseif (p = 0) then loop(s+1, p)else loop(s, subPrefix(prefixArray, p-1)+1)else (s - patLen)else ~1where loop <| {s:nat, p:nat} int(s) * int(p) -> intin loop(0, 0)endwhere kmpMatch <| {s:nat, p:nat} int array(s) * int array(p) -> intend
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A.2. RED/BLACK TREE 161A.2 Red/Black Tree(** This example shows that the insert operation maps a balanced* red/black tree into a balanced one. Also it increases the size* of the tree by at most one (note that the inserted key may have* already existed in the tree). There 8 type annotations occupying* about 20 lines.*)structure RedBlackTree =structtype key = inttype answer = key optiontype 'a entry = int * 'adatatype order = LESS | EQUAL | GREATERdatatype 'a dict =Empty (* considered black *)| Black of 'a entry * 'a dict * 'a dict| Red of 'a entry * 'a dict * 'a dict(** We refine the datatype 'a dict with an index of type* (nat * nat * nat * nat). The meaning of the 4 numbers* is: (color, black height, red height, size). A balanced* tree is one such that* (1) for every node in it, both of its sons are of the* same black height.* (2) the red height of the tree is 0, which means that there existno consecutive red nodes.*)typeref 'a dict of nat * nat * nat * nat withEmpty <| 'a dict(0, 0, 0, 0)| Black <|{cl:nat, cr:nat, bh:nat, sl:nat, sr:nat}'a entry * 'a dict(cl, bh, 0, sl) * 'a dict(cr, bh, 0, sr) ->'a dict(0, bh+1, 0, sl+sr+1)| Red <| {cl:nat, cr:nat, bh:nat, rhl:nat, rhr:nat, sl:nat, sr:nat}'a entry * 'a dict(cl, bh, rhl, sl) * 'a dict(cr, bh, rhr, sr) ->'a dict(1, bh, cl+cr+rhl+rhr, sl+sr+1)(* note if the root of a tree is black, then the tree is a balanced *)
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162 APPENDIX A. DML CODE EXAMPLESfun compare (s1:int,s2:int) =if s1 > s2 then GREATER else if s1 < s2 then LESS else EQUALwhere compare <| int * int -> orderfun('a)lookup dict key =letfun lk (Empty) = NONE| lk (Red tree) = lk' tree| lk (Black tree) = lk' treewhere lk <| 'a dict -> answerand lk' ((key1, datum1), left, right) =(case compare(key,key1) ofEQUAL => SOME(key1)| LESS => lk left| GREATER => lk right)where lk' <| 'a entry * 'a dict * 'a dict -> answerin lk dictendwhere lookup <| 'a dict -> key -> answerfun('a)restore_right(e, Red lt, Red (rt as (_,Red _,_))) =Red(e, Black lt, Black rt)(* re-color *)| restore_right(e, Red lt, Red (rt as (_,_,Red _))) =Red(e, Black lt, Black rt)(* re-color *)| restore_right(e, l as Empty, Red(re, Red(rle, rll, rlr), rr)) =Black(rle, Red(e, l, rll), Red(re, rlr, rr))| restore_right(e, l as Black _, Red(re, Red(rle, rll, rlr), rr)) =(* l is black, deep rotate *)Black(rle, Red(e, l, rll), Red(re, rlr, rr))| restore_right(e, l as Empty, Red(re, rl, rr as Red _)) =Black(re, Red(e, l, rl), rr)| restore_right(e, l as Black _, Red(re, rl, rr as Red _)) =(* l is black, shallow rotate *)Black(re, Red(e, l, rl), rr)| restore_right(e, l, r as Red(_, Empty, Empty)) = Black(e, l, r)
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A.2. RED/BLACK TREE 163| restore_right(e, l, r as Red(_, Black _, Black _)) =Black(e, l, r) (* r must be a red/black tree *)| restore_right(e, l, r as Black _) =Black(e, l, r) (* r must be a red/black tree *)where restore_right <|{cl:nat, cr:nat, bh:nat, rhr:nat, sl:nat, sr:nat | rhr <= 1}'a entry * 'a dict(cl, bh, 0, sl) * 'a dict(cr, bh, rhr, sr) ->[c:nat | c <= 1 ] 'a dict(c, bh+1, 0, sl + sr + 1)fun('a)restore_left(e, Red (lt as (_,Red _,_)), Red rt) =Red(e, Black lt, Black rt)(* re-color *)| restore_left(e, Red (lt as (_,_,Red _)), Red rt) =Red(e, Black lt, Black rt)(* re-color *)| restore_left(e, Red(le, ll as Red _, lr), r as Empty) =Black(le, ll, Red(e, lr, r))| restore_left(e, Red(le, ll as Red _, lr), r as Black _) =(* r is black, shallow rotate *)Black(le, ll, Red(e, lr, r))| restore_left(e, Red(le, ll, Red(lre, lrl, lrr)), r as Empty) =Black(lre, Red(le, ll, lrl), Red(e, lrr, r))| restore_left(e, Red(le, ll, Red(lre, lrl, lrr)), r as Black _) =(* r is black, deep rotate *)Black(lre, Red(le, ll, lrl), Red(e, lrr, r))| restore_left(e, l as Red(_, Empty, Empty), r) = Black(e, l, r)| restore_left(e, l as Red(_, Black _, Black _), r) =Black(e, l, r) (* l must be a red/black tree *)| restore_left(e, l as Black _, r) =Black(e, l, r) (* l must be a red/black tree *)where restore_left <|{cl:nat, cr:nat, bh:nat, rhl:nat, sl:nat, sr:nat | rhl <= 1}'a entry * 'a dict(cl, bh, rhl, sl) * 'a dict(cr, bh, 0, sr) ->[c:nat | c <= 1 ] 'a dict(c, bh+1, 0, sl + sr + 1)
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164 APPENDIX A. DML CODE EXAMPLESexception Item_Is_Foundfun('a)insert (dict, entry as (key,datum)) =let(* val ins : 'a dict -> 'a dict inserts entry* ins (Red _) may violate color invariant at root,* having red height 1* ins (Black _) or ins (Empty) will always be red/black* ins always preserves black height*)fun ins (Empty) = Red(entry, Empty, Empty)| ins (Red(entry1 as (key1, datum1), left, right)) =(case compare(key,key1) ofEQUAL => raise Item_Is_Found| LESS => Red(entry1, ins left, right)| GREATER => Red(entry1, left, ins right))| ins(Black(entry1 as (key1, datum1), left, right)) =(case compare(key,key1) ofEQUAL => raise Item_Is_Found| LESS => restore_left(entry1, ins left, right)| GREATER => restore_right(entry1, left, ins right))where ins <|{c:nat, bh:nat, s:nat}'a dict(c, bh, 0, s) ->[nc:nat, nrh:nat |((c = 0 /\ nrh = 0 /\ nc <= 1) \/ (c = 1 /\ nrh <= 1 /\ nc = 1))]'a dict(nc, bh, nrh, s+1)in letval dict = ins dictin case dict ofRed (t as (_, Red _, _)) => Black t (* re-color *)| Red (t as (_, _, Red _)) => Black t (* re-color *)| Red (t as (_, Black _, Black _)) => dict| Red (t as (_, Empty, Empty)) => dict| Black _ => dictend handle Item_Is_Found => dictendwhere insert <|{c:nat, bh:nat, s:nat}'a dict(c, bh, 0, s) * 'a entry ->[nc:nat, nbh:nat, ns:nat |



www.manaraa.com

A.3. QUICKSORT ON ARRAYS 165(nbh = bh \/ nbh = bh + 1) /\ (ns = s \/ ns = s + 1) ]'a dict(nc, nbh, 0, ns)endA.3 Quicksort on Arrays(** This example shows that array bounds checking is not required in* the following implementation of an in-place quicksort algorithm* on arrays. The code is copied from SML/NJ lib with some modification.* There are 16 type annotations occupying about 40 lines.*)structure Array_QSort =structdatatype order = LESS | EQUAL | GREATERassert sub <| {n:nat, i:nat | i < n } 'a array(n) * int(i) -> 'aand update <| {n:nat, i:nat| i < n } 'a array(n) * int(i) * 'a -> unitand length <| {n:nat} 'a array(n) -> int(n)fun('a){size:nat}sortRange(arr, start, n, cmp) =letfun item i = sub(arr,i)where item <| {i:nat | i < size } int(i) -> 'afun swap (i,j) =letval tmp = item iin update(arr, i, item j); update(arr, j, tmp)endwhere swap <|{i:nat, j:nat | i < size /\ j < size } int(i) * int(j) -> unitfun vecswap (i,j,n) =if (n = 0) then () else (swap(i,j);vecswap(i+1,j+1,n-1))where vecswap <|{i:nat, j:nat, n:nat | i+n <= size /\ j+n <= size}int(i) * int(j) * int(n) -> unit(** insertSort is called if there are less than
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166 APPENDIX A. DML CODE EXAMPLES* eight elements to be sorted*)fun insertSort (start, n) =letval limit = start+nfun outer i =if i >= limit then ()elseletfun inner j =if j <= start then outer(i+1)elseletval j' = j - 1in case cmp(item j',item j) ofGREATER => (swap(j,j'); inner j')| _ => outer(i+1)endwhere inner <| {j:nat | j < size } int(j) -> unitin inner iendwhere outer <| {i:nat} int(i) -> unitin outer(start+1)endwhere insertSort <|{start:nat, n:nat | start+n <= size } int(start) * int(n) -> unit(* calculate the median of three *)fun med3(a,b,c) =letval a' = item aval b' = item bval c' = item cin case (cmp(a', b'),cmp(b', c')) of(LESS, LESS) => b| (LESS, _) => (case cmp(a', c') of LESS => c | _ => a)| (_, GREATER) => b| _ => (case cmp(a', c') of LESS => a | _ => c)(* end case *)endwhere med3 <|
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A.3. QUICKSORT ON ARRAYS 167{a:nat,b:nat,c:nat | a < size /\ b < size /\ c < size }int(a) * int(b) * int(c) -> [n:nat | n < size ] int(n)(* generate the pivot for splitting the elements *)fun getPivot (a,n) =if n <= 7 then a + n div 2elseletval p1 = aval pm = a + n div 2val pn = a + n - 1in if n <= 40 then med3(p1,pm,pn)elseletval d = n div 8val p1 = med3(p1,p1+d,p1+2*d)val pm = med3(pm-d,pm,pm+d)val pn = med3(pn-2*d,pn-d,pn)in med3(p1,pm,pn)endendwhere getPivot <|{a:nat,n:nat | 1 < n /\ a + n <= size }int(a) * int(n) -> [p:nat | p < size] int(p)fun quickSort (arg as (a, n)) =let(** bottom was defined as a higher order* function in the SML/NJ library*)fun bottom(limit, arg as (pa, pb)) =if pb > limit then argelsecase cmp(item pb,item a) ofGREATER => arg| LESS => bottom(limit, (pa, pb+1))| _ => (swap arg; bottom(limit, (pa+1,pb+1)))where bottom <|{l:nat, ppa:nat, ppb:nat |l < size /\ ppa <= ppb <= l+1 }int(l) * (int(ppa) * int(ppb)) ->[pa:nat, pb:nat | ppa <= pa <= pb <= l+1]
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168 APPENDIX A. DML CODE EXAMPLES(int(pa) * int(pb))(** top was defined as a higher order* function in the SML/NJ library*)fun top(limit, arg as (pc, pd)) =if limit > pc then argelse case cmp(item pc,item a) ofLESS => arg| GREATER => top(limit, (pc-1,pd))| _ => (swap arg; top(limit, (pc-1,pd-1)))where top <|{l:nat, ppc:nat, ppd:nat |0 < l <= ppc+1 /\ ppc <= ppd < size }int(l) * (int(ppc) * int(ppd)) ->[pc:nat, pd:nat | l <= pc+1 /\ pc <= pd <= ppd](int(pc) * int(pd))fun split (pa,pb,pc,pd) =letval (pa,pb) = bottom(pc, (pa,pb))val (pc,pd) = top(pb, (pc,pd))in if pb >= pc then (pa,pb,pc,pd)else (swap(pb,pc); split(pa,pb+1,pc-1,pd))endwhere split <|{ppa:nat, ppb:nat, ppc:nat, ppd:nat |0 < ppa <= ppb <= ppc+1 /\ ppc <= ppd < size }int(ppa) * int(ppb) * int(ppc) * int(ppd) ->[pa:nat, pb:nat, pc:nat, pd:nat |ppa <= pa <= pb <= pc+1 /\ pc <= pd <= ppd ](int(pa) * int(pb) * int(pc) * int(pd))val pm = getPivot argand _ = swap(a,pm)and pa = a + 1and pc = a + (n-1)and (pa,pb,pc,pd) = split(pa,pa,pc,pc)and pn = a + nval r = min(pa - a, pb - pa)val _ = vecswap(a, pb-r, r)
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A.3. QUICKSORT ON ARRAYS 169val r = min(pd - pc, pn - pd - 1)val _ = vecswap(pb, pn-r, r)val n' = pb - paval _ = (if n' > 1 then sort(a,n') else ()) <| unitval n' = pd - pcval _ = (if n' > 1 then sort(pn-n',n') else ()) <| unitin () endwhere quickSort <|{a:nat, n:nat | 7 <= n /\ a+n <= size } int(a) * int(n) -> unitand sort (arg as (_, n)) =if n < 7 then insertSort argelse quickSort argwhere sort <|{a:nat, n:nat | a+n <= size } int(a) * int(n) -> unitin sort (start,n)endwhere sortRange <|{start:nat, n:nat | start+n <= size }'a array(size) * int(start) * int(n) * ('a * 'a -> order) -> unit(* sorted checks if a list is well-sorted *)fun('a){size:nat}sorted cmp arr =letval len = length arrfun s(v,i) =letval v' = sub(arr,i)in case cmp(v,v') ofGREATER => false| _ => if i+1 = len then true else s(v',i+1)endwhere s <| {i:nat | i < size } 'a * int(i) -> boolin if len <= 1 then true else s(sub(arr,0),1)endwhere sorted <| ('a * 'a -> order) -> 'a array(size) -> boolend (* end of the structure *)
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170 APPENDIX A. DML CODE EXAMPLESA.4 Mergesort on Listsstructure Merge_Sort =structdatatype 'a listlist = Nil | Cons of 'a list * 'a listlisttyperef 'a listlist of nat * natwith Nil <| 'a listlist(0,0)| Cons <| {l:nat,m:nat,n:nat}'a list(l) * 'a listlist(m,n) -> 'a listlist(m+1,n+l)assert not <| bool -> booland rev <| {n:nat} 'a list(n) -> 'a list(n)and hd <| { n:nat | n > 0 } 'a list(n) -> 'afun('a)sort cmp ls =let fun merge([],ys) = ys| merge(xs,[]) = xs| merge(x::xs,y::ys) =if cmp(x,y) then y::merge(x::xs,ys)else x::merge(xs,y::ys)where merge <|{m:nat, n:nat} 'a list(m) * 'a list(n) -> 'a list(m+n)fun mergepairs'(ls as Cons(l,Nil)) = l| mergepairs'(Cons(l1,Cons(l2,ls))) =mergepairs'(Cons(merge(l1,l2),ls))where mergepairs' <|{m:nat, n:nat | m > 0} 'a listlist(m,n) -> 'a list(n)fun mergepairs(ls as Cons(l,Nil), k) = ls| mergepairs(Cons(l1,Cons(l2,ls)),k) =if k mod 2 = 1 then Cons(l1,Cons(l2,ls))else mergepairs(Cons(merge(l1,l2),ls), k div 2)where mergepairs <|{m:nat, n:nat | m > 0}'a listlist(m,n) * int -> [m:nat | m > 0] 'a listlist(m,n)fun nextrun(run,[]) = (rev run,[])| nextrun(run,x::xs) =if cmp(x,hd(run)) then nextrun(x::run,xs)else (rev run,x::xs)where nextrun <|{m:nat, n:nat | m > 0 }
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A.5. A BYTE COPY FUNCTION 171'a list(m) * 'a list(n) ->[p:nat, q:nat | p+q = m+n] ('a list(p) * 'a list(q))fun samsorting([], ls, k) = mergepairs'(ls)| samsorting(x::xs, ls, k) =let val (run,tail) = nextrun([x],xs)in samsorting(tail, mergepairs(Cons(run,ls),k+1), k+1)endwhere samsorting <|{l:nat,m:nat,n:nat | m+l > 0}'a list(l) * 'a listlist(m,n) * int -> 'a list(n+l)in case ls of [] => [] | _::_ => samsorting(ls, Nil, 0)endwhere sort <| {n:nat} ('a * 'a -> bool) -> 'a list(n) -> 'a list(n)fun('a)sorted (cmp) =let fun s (x::(rest as (y::_))) = not(cmp(x, y)) andalso s rest| s l = truewhere s <| 'a list -> boolin s endwhere sorted <| ('a * 'a -> bool) -> 'a list -> boolend (* end of mergeSort *)A.5 A Byte Copy FunctionThis implementation of a byte copy function is used in the Fox project.(* This is an optimized version of byte copy function used in the Fox* project. All the array bound checks can be eliminated. There are* 13 type annotations, which consists of roughly 20% of the code*)structure BCopy =structassert sub1 <| {n:nat, i:nat| i < n } array(n) * int(i) -> byte1and update1 <|{n:nat, i:nat| i < n } array(n) * int(i) * byte1 -> unit
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172 APPENDIX A. DML CODE EXAMPLESassert sub2 <| {n:nat, i:nat| i + 1 < n } array(n) * int(i) -> byte2and update2 <|{n:nat, i:nat| i + 1 < n } array(n) * int(i) * byte2 -> unitassert sub4 <| {n:nat, i:nat| i + 3 < n } array(n) * int(i) -> byte4and update4 <|{n:nat, i:nat| i + 3 < n } array(n) * int(i) * byte4 -> unitassert << <| byte4 * int -> byte4and || <| byte4 * byte4 -> byte4and >> <| byte4 * int -> byte4fun{m:nat, n:nat, endsrc:nat}unaligned(src, srcpos, endsrc, dest, destpos) =letfun loop(i,j) =if (i >= endsrc) then ()else (update1(dest, j, sub1(src, i)); loop(i+1, j+1))where loop <|{i:nat, j:nat | j + endsrc - i <= n } int(i) * int(j) -> unitin loop(srcpos, destpos)endwhere unaligned <|{srcpos:nat, destpos:nat | endsrc <= m /\ destpos + endsrc - srcpos <= n }array(m) * int(srcpos) * int(endsrc) * array(n) * int(destpos) -> unitfun{m:nat, n:nat, endsrc:nat}common(src, srcpos, endsrc, dest, destpos) =case endsrc - srcpos of1 => (update1(dest, destpos, sub1(src, srcpos)))| 2 => (update1(dest, destpos, sub1(src, srcpos));update1(dest, destpos+1, sub1(src, srcpos+1)))| 4 => (update1(dest, destpos, sub1(src, srcpos));update1(dest, destpos+1, sub1(src, srcpos+1));update1(dest, destpos+2, sub1(src, srcpos+2));update1(dest, destpos+3, sub1(src, srcpos+3)))| 8 => (update1(dest, destpos, sub1(src, srcpos));update1(dest, destpos+1, sub1(src, srcpos+1));update1(dest, destpos+2, sub1(src, srcpos+2));update1(dest, destpos+3, sub1(src, srcpos+3));
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A.5. A BYTE COPY FUNCTION 173update1(dest, destpos+4, sub1(src, srcpos+4));update1(dest, destpos+5, sub1(src, srcpos+5));update1(dest, destpos+6, sub1(src, srcpos+6));update1(dest, destpos+7, sub1(src, srcpos+7)))| 16 => (update1(dest, destpos, sub1(src, srcpos));update1(dest, destpos+1, sub1(src, srcpos+1));update1(dest, destpos+2, sub1(src, srcpos+2));update1(dest, destpos+3, sub1(src, srcpos+3));update1(dest, destpos+4, sub1(src, srcpos+4));update1(dest, destpos+5, sub1(src, srcpos+5));update1(dest, destpos+6, sub1(src, srcpos+6));update1(dest, destpos+7, sub1(src, srcpos+7));update1(dest, destpos+8, sub1(src, srcpos+8));update1(dest, destpos+9, sub1(src, srcpos+9));update1(dest, destpos+10, sub1(src, srcpos+10));update1(dest, destpos+11, sub1(src, srcpos+11));update1(dest, destpos+12, sub1(src, srcpos+12));update1(dest, destpos+13, sub1(src, srcpos+13));update1(dest, destpos+14, sub1(src, srcpos+14));update1(dest, destpos+15, sub1(src, srcpos+15)))| 20 => (update1(dest, destpos, sub1(src, srcpos));update1(dest, destpos+1, sub1(src, srcpos+1));update1(dest, destpos+2, sub1(src, srcpos+2));update1(dest, destpos+3, sub1(src, srcpos+3));update1(dest, destpos+4, sub1(src, srcpos+4));update1(dest, destpos+5, sub1(src, srcpos+5));update1(dest, destpos+6, sub1(src, srcpos+6));update1(dest, destpos+7, sub1(src, srcpos+7));update1(dest, destpos+8, sub1(src, srcpos+8));update1(dest, destpos+9, sub1(src, srcpos+9));update1(dest, destpos+10, sub1(src, srcpos+10));update1(dest, destpos+11, sub1(src, srcpos+11));update1(dest, destpos+12, sub1(src, srcpos+12));update1(dest, destpos+13, sub1(src, srcpos+13));update1(dest, destpos+14, sub1(src, srcpos+14));update1(dest, destpos+15, sub1(src, srcpos+15));update1(dest, destpos+16, sub1(src, srcpos+16));update1(dest, destpos+17, sub1(src, srcpos+17));update1(dest, destpos+18, sub1(src, srcpos+18));update1(dest, destpos+19, sub1(src, srcpos+19)))| _ => unaligned(src, srcpos, endsrc, dest, destpos)where common <|
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174 APPENDIX A. DML CODE EXAMPLES{srcpos:nat, destpos:nat |endsrc <= m /\ destpos + endsrc - srcpos <= n }array(m) * int(srcpos) * int(endsrc) * array(n) * int(destpos) -> unitfun{m:nat, n:nat, endsrc:nat}sixteen(src, srcpos, endsrc, dest, destpos) =letfun loop(i, j) =if i >= endsrc then ()else(update4(dest, j, sub4(src, i));update4(dest, j+4, sub4(src, i+4));update4(dest, j+8, sub4(src, i+8));update4(dest, j+12, sub4(src, i+12));loop(i+16, j+16))where loop <|{i:nat, j:nat | (endsrc - i) mod 16 = 0 /\ j + endsrc - i <= n }int(i) * int(j) -> unitin loop(srcpos, destpos)endwhere sixteen <|{srcpos:nat, destpos:nat |endsrc <= m /\ (endsrc - srcpos) mod 16 = 0 /\destpos + endsrc - srcpos <= n }array(m) * int(srcpos) * int(endsrc) * array(n) * int(destpos) -> unitfun{srcalign:nat}aligned(src, srcpos, endsrc, dest, destpos, srcalign, bytes) =letval front =(case srcalign of0 => 0| 1 => 3| 2 => 2| 3 => 1) <| [i:nat | (srcalign = 0 /\ i = 0) \/(srcalign = 1 /\ i = 3) \/(srcalign = 2 /\ i = 2) \/(srcalign = 3 /\ i = 1)] int(i)val rest = bytes - frontval tail = rest mod 16val middle = rest - tail
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A.5. A BYTE COPY FUNCTION 175val midsrc = srcpos + frontval middest = destpos + frontval backsrc = midsrc + middleval backdest = middest + middlein unaligned(src, srcpos, midsrc, dest, destpos);sixteen(src, midsrc, backsrc, dest, middest);unaligned(src, backsrc, endsrc, dest, backdest)endwhere aligned <|{m:nat, n:nat, srcpos:nat, endsrc:nat, destpos:nat, bytes:nat |endsrc <= m /\ srcpos + bytes = endsrc /\destpos + bytes <= n /\ 16 <= bytes }array(m) * int(srcpos) * int(endsrc) *array(n) * int(destpos) * int(srcalign) * int(bytes) -> unitfun{m:nat, n:nat, endsrc:nat}eightlittle(src, srcpos, endsrc, dest, destpos) =letassert makebyte2 <| byte4 -> byte2and makebyte4 <| byte2 -> byte4fun loop(i, j, carry) =if i >= endsrc then update2(dest, j, makebyte2(carry))elseletval srcv = sub4(src, i)in update4(dest, j, ||(carry, <<(srcv, 16)));letval i = i + 4val j = j + 4val carry = >>(srcv, 16)val srcv = sub4(src, i)in update4(dest, j, ||(carry, <<(srcv, 16)));loop(i+4, j+4, >>(srcv, 16))endendwhere loop <|{i:nat, j:nat |i <= endsrc /\ (endsrc - i) mod 8 = 0 /\ j + endsrc - i + 2 <= n }int(i) * int(j) * byte4 -> unit
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176 APPENDIX A. DML CODE EXAMPLESin loop(srcpos+2, destpos, makebyte4(sub2(src, srcpos)))endwhere eightlittle <|{srcpos:nat, destpos:nat |endsrc <= m /\ srcpos <= endsrc /\(endsrc - srcpos) mod 8 = 2 /\ destpos + endsrc - srcpos <= n }array(m) * int(srcpos) * int(endsrc) * array(n) * int(destpos) -> unitfun{m:nat, n:nat, endsrc:nat}eightbig(src, srcpos, endsrc, dest, destpos) =letassert makebyte2 <| byte4 -> byte2and makebyte4 <| byte2 -> byte4fun loop(i, j, carry) =if i >= endsrc then update2(dest, j, makebyte2(>>(carry, 16)))elselet val srcv = sub4(src, i)in update4(dest, j, ||(carry, >>(srcv, 16)));letval i = i + 4val j = j + 4val carry = <<(srcv, 16)val srcv = sub4(src, i)in update4(dest, j, ||(carry, >>(srcv, 16)));loop(i + 4, j + 4, <<(srcv, 16))endendwhere loop <|{i:nat, j:nat |i <= endsrc /\ (endsrc - i) mod 8 = 0 /\ j + endsrc - i + 2 <= n }int(i) * int(j) * byte4 -> unitin loop(srcpos + 2, destpos, <<(makebyte4(sub2(src, srcpos)), 16))endwhere eightbig <|{srcpos:nat, destpos:nat | endsrc <= m /\ srcpos <= endsrc /\(endsrc - srcpos) mod 8 = 2 /\ destpos + endsrc - srcpos <= n }array(m) * int(srcpos) * int(endsrc) * array(n) * int(destpos) -> unitassert endian <| int and Little <| int
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A.5. A BYTE COPY FUNCTION 177fun eight(src, srcpos, endsrc, dest, destpos) =if endian = Little then eightbig(src, srcpos, endsrc, dest, destpos)else eightlittle(src, srcpos, endsrc, dest, destpos)where eight <|{m:nat, n:nat, endsrc:nat, srcpos:nat, destpos:nat |endsrc <= m /\ srcpos <= endsrc /\(endsrc - srcpos) mod 8 = 2 /\ destpos + endsrc - srcpos <= n }array(m) * int(srcpos) * int(endsrc) * array(n) * int(destpos) -> unitfun{srcalign:nat}semialigned(src, srcpos, endsrc, dest, destpos, srcalign, bytes) =letval front =(case srcalign of0 => 2| 2 => 0| 1 => 1| 3 => 3) <| [i:nat | (srcalign = 0 /\ i = 2) \/(srcalign = 2 /\ i = 0) \/(srcalign = 1 /\ i = 1) \/(srcalign = 3 /\ i = 3)] int(i)val rest = bytes -frontval tail = (rest - 2) mod 8val middle = rest - tailval midsrc = srcpos + frontval middest = destpos + frontval backsrc = midsrc + middleval backdest = middest + middlein unaligned(src, srcpos, midsrc, dest, destpos);eight(src, midsrc, backsrc, dest, middest);unaligned(src, backsrc, endsrc, dest, backdest)endwhere semialigned <|{m:nat, n:nat, srcpos:nat, endsrc:nat, destpos:nat, bytes:nat |endsrc <= m /\ srcpos + bytes = endsrc /\destpos + bytes <= n /\ 16 <= bytes }array(m) * int(srcpos) * int(endsrc) *array(n) * int(destpos) * int(srcalign) * int(bytes) -> unitfun copy(src, srcpos, bytes, dest, destpos) =if (bytes < 25) then
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178 APPENDIX A. DML CODE EXAMPLEScommon(src, srcpos, srcpos + bytes, dest, destpos)elseletval srcalign = srcpos mod 4val destalign = destpos mod 4val endsrc = srcpos + bytesin if srcalign = destalign thenaligned(src, srcpos, endsrc, dest, destpos, srcalign, bytes)else if (srcalign + destalign) mod 2 = 0 thensemialigned(src, srcpos, endsrc, dest,destpos, srcalign, bytes)else unaligned(src, srcpos, endsrc, dest, destpos)endwhere copy <|{m:nat, n:nat, srcpos:nat, bytes:int, destpos:nat |srcpos + bytes <= m /\ destpos + bytes <= n }array(m) * int(srcpos) * int(bytes) * array(n) * int(destpos) -> unitend (* end of the structure BCopy *)
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